Fig. 1. Shematic diagram for propane pulse-injection dehydrogenation reaction test equipment.
Fig. 2. Propane pulse-injection dehydrogenation performance of PtSn (4.5) with reduction duration time (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).
Fig. 3. Effect of reduction temperature on catalytic performance of propane pulse-injection dehydrogenation (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).
Fig. 4. Effect of air-redispersion temperature after hydrogen sintering on catalytic performance of propane pulse-injection dehydrogenation of PtSn (4.5) (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).
Fig. 5. Effect of added Sn amount to platinum catalyst on propane pulse-injection dehydrogenation reaction (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).
Fig. 6. XRD patterns of PtSn(4.5) catalysts of air-redispersion after hydrogen-sintering with various temperature.
Fig. 7. Raman spectroscopy of used PtSn(4.5) catalysts with various air-redispersion temperature after hydrogen-sintering.
Fig. 8. XPS spectra of used PtSn(4.5) catalysts with various air-redispersion temperature after hydrogen-sintering.
Table 1. XPS analysis of catalysts subjected to different conditions
References
- Jesper, J. H. B. Sattler, Javier Ruiz-Martinez, Eduardo Santillan- Jimenez, and Bert M. Weckhuysen, "Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides," Chem. Rev., 114, 10613-10653(2014). https://doi.org/10.1021/cr5002436
- Nawaz, Z., "Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review," Rev. Chem. Eng., 31, 413-436(2015). https://doi.org/10.1515/revce-2015-0012
- Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T. and Pujado, P. R., Appl. Catal. A., 221, 397-419(2001). https://doi.org/10.1016/S0926-860X(01)00816-X
- Loc, L. C., Gaidai, N. A. and Kipeman, S. L., In: Proc. 9th Internat. Congr. Catal., 3, 1261(1988).
-
Jablonski, E. L., Castro, A. A., Scelza, O. A. and Miguel, S. R. de., "Effect of Ga Addition to Pt/
$Al_2O_3$ on the Activity, Selectivity and Deactivation in the Propane Dehydrogenation," Appl. Catal. A. Gen., 183, 189-198(1999). https://doi.org/10.1016/S0926-860X(99)00058-7 - Yu, C., Ge, Q., Xu, H. and Li, W., "Propane Dehydrogenation to Propylene over Pt-based Catalysts," Catal. Lett., 112, 197-201 (2006). https://doi.org/10.1007/s10562-006-0203-y
- Corro, C., Marecot, P., Barbier, J., Bartholomew, C. H. and Fuentes, G. A., "Catalyst Deactivation 1997," Stud. Surf. Sci. Catal., 111, 359(1997). https://doi.org/10.1016/S0167-2991(97)80175-9
- Miguel, S. R. de., Jablonski, E. L., Castro, A. A. and Scelza, O. A., J. Chem. Technol. Biotechnol., 75, 596(2000). https://doi.org/10.1002/1097-4660(200007)75:7<596::AID-JCTB251>3.0.CO;2-6
- Praserthdam, P., Mongkhonsi, T., Kunatippapong, S., Jaikaew, B. and Lim, N., "Determination of Coke Deposition on Metal Active Sites of Propane Dehydrogenation Catalysts," Stud. Surf. Sci. Catal., 111, 153-158(1997). https://doi.org/10.1016/S0167-2991(97)80150-4
- Kumar, M. S., Chen, D., Walmsley, J. C. and Holmen A., "Dehydrogenation of Propane over Pt-SBA-15: Effect of Pt Particle Size," Catal. Commun., 9, 747-750(2008). https://doi.org/10.1016/j.catcom.2007.08.015
- Akporiaye, D., Jensen, S. F., Olsbye, U., Rohr, F., Rytter, E., Ronnekleiv, M. and Spielkavik, A. I., "A Novel, Highly Efficient Catalyst for Propane Dehydrogenation," Ind. Eng. Chem. Res., 40, 4741-4748(2001). https://doi.org/10.1021/ie010299+
- Hullmann, D., Wendt, G., Singliar, U. and Ziegenbalg, G., "Propane Dehydrogenation over Supported Platinum Silicon Nitride Catalysts," Appl. Catal. A. Gen., 225, 261-270(2002). https://doi.org/10.1016/S0926-860X(01)00871-7
- Beekman, J. W. and Froment, G. F., "Catalyst Deactivation by Active Site Coverage and Pore Blockage," Ind. Eng. Chem. Fundamen., 18, 245-256(1979). https://doi.org/10.1021/i160071a009
- Gascon, J., Tellez, C., Herguido, J. and Menendez, M., "A Twozone Fluidized Bed Reactor for Catalytic Propane Dehydrogenation," Chem. Eng. J., 106, 91-96(2005). https://doi.org/10.1016/j.cej.2004.11.005
- Sanfilippo, D., Buonomo, F., Fusco, G., Lupieri, M. and Miracca, I., "Fluidized Bed Reactors for Paraffins Dehydrogenation," Chem. Eng. Sci., 47, 2313-2318(1992). https://doi.org/10.1016/0009-2509(92)87053-S
- Miracca, I. and Piovesan, L., "Light Paraffins Dehydrogenation in a Fluidized Bed Reactor," Catal. Today., 52, 259-269(1999). https://doi.org/10.1016/S0920-5861(99)00080-2
- Siriwardane, R., Benincosa, W., Riley, J., Tian, H. and Richards, G., "Investigation of Reactions in a Fluidized Bed Reactor During Chemical Looping Combustion of Coal/steam with Copper Oxideiron Oxide-alumina Oxygen Carrier," Appl. Energy., 183, 1550-1564(2016). https://doi.org/10.1016/j.apenergy.2016.09.045
- Banerjee, S. and Agarwal, R., "Transient Reacting Flow Simulation of Spouted Fluidized Bed for Coal-direct Chemical Looping Combustion with Different Fe-based Oxygen Carriers," Appl. Energy., 160, 552-560(2015). https://doi.org/10.1016/j.apenergy.2015.10.013
- Sanfilippo, D., "Dehydrogenations on Fluidized Bed: Catalysis and Reactor Engineering," Catal. Today., 178, 142-150(2011). https://doi.org/10.1016/j.cattod.2011.07.013
- Sim, S., Gong, S., Bae, J., Park, Y. K., Kim, J., Choi, W. C., Hong, U. G., Park, D. S., Song, I. K., Seo, H., Kang, N. Y. and Park, S., "Chromium Oxide Supported on Zr Modified Alumina for Stable and Selective Propand Dehydrogenation in Oxygen Free Moving Bed Process," Molecular Catalysis., 436, 164-173(2017). https://doi.org/10.1016/j.mcat.2017.04.022
-
Kim, G. H., Jung, K. D., Kim, W. I., Um, B. H., Shin, C. H., Oh, K. and Koh, H. L., "Effect of Oxychlorination Treatment on the Regeneration of Pt-Sn/
$Al_2O_3$ Catalyst for Propane Dehydrogenation," Research on Chemical Intermediates, 42, 351-365(2016). https://doi.org/10.1007/s11164-015-2300-2 -
Kawakami, M., Karato, T., Takenaka, T. and Yokoyama, S., "Structure Analysis of Coke, Wood, Charcoal and Bamboo Charcoal by Raman Spectroscopy and Their Reactrion Rate with
$CO_2$ ," The Iron and Steel Institute of Japan, 45, 1027-1034(2005). https://doi.org/10.2355/isijinternational.45.1027 - Choi, S. M., "A Horizon of Science," Korea Institute for Advanced Study, 47, 23-25(2013).
- Shan, Y., Sui, Z., Zhu, Y., Chen, D. and Zhou, X., "Effect of Steam Addition on the Structure and Activity of Pt-Sn Catalysts in Propane Dehydrogenation," Chem. Eng. J., 278, 240-248(2015). https://doi.org/10.1016/j.cej.2014.09.107
- Han, Z., Li, S., Jiang, F., Wang, T., Ma, X. and Gong, J., "Propane Dehydrogenation over Pt-Cu Bimetallic Catalysts: the Nature of Coke Deposition and the Role of Copper," Nanoscale, 6, 10000-10008(2014). https://doi.org/10.1039/C4NR02143F
- Wagner C. D., NIST X-ray Photoelectron Spectroscopy Database, NIST, Gathersburg, 1989.
- Virnovskaia, A., Jorgensen, S., Hafizovic, J., Prytz, O., Kleimenov, E., Havecker, M., Bluhm, H., Knop-Gericke, A., Schlogl, R. and Olsbye, U., "In situ XPS Investigation of Pt(Sn)/Mg(Al)O Catalysts During Ethane Dehydrogenation Experiments," Surf. Sci. 601, 30-43(2007). https://doi.org/10.1016/j.susc.2006.09.002
-
Vu, B. K., Song, M. B., Ahn, I. Y., Suh, Y. W., Suh, D. J., Kim, W. I., Koh, H. L., Choi, Y. G. and Shin, E. W., "Pt-Sn Alloy Phases and Coke Mobility over Pt-Sn/
$Al_2O_3$ and Pt-Sn/$ZnAl_2O_4$ Catalysts for Propane Dehydrogenation," Appl. Catal. A., 400, 25-33 (2011). https://doi.org/10.1016/j.apcata.2011.03.057 - Adkins, S. R. and Davis, B. H., "The Chemical State of Tin in Platinum-tin-alumina Catalysts," J. Catal., 89, 371-379(1984). https://doi.org/10.1016/0021-9517(84)90313-0
- Siri, G. J., Ramallo-Lopez, J. M., Casella, M. L., Fierro, J. L. G., Requejo, F. G. and Ferretti, O. A., "XPS and EXAFS Study of Supported PtSn Catalysts Obtained by Surface Organometallic Chemistry on Metals : Application to the Isobutane Dehydrogenation," Appl. Catal. A., 278, 239-249(2005). https://doi.org/10.1016/j.apcata.2004.10.004