DOI QR코드

DOI QR Code

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution

해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구

  • Choi, Eunji (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Dongwoo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Yoo, Yunsung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jinwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Huh, Il-sang (Wooju Envitech, Inc. R&D Center)
  • 최은지 (연세대학교 화공생명공학과) ;
  • 강동우 (연세대학교 화공생명공학과) ;
  • 유윤성 (연세대학교 화공생명공학과) ;
  • 박진원 (연세대학교 화공생명공학과) ;
  • 허일상 ((주)우주엔비텍 기술연구실)
  • Received : 2019.02.11
  • Accepted : 2019.04.10
  • Published : 2019.08.01

Abstract

Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

지구온난화가 국제 문제로 언급되면서 온실가스 저감에 관한 연구가 꾸준히 진행되고 있다. 지구온난화의 가속화를 막기 위해 지구온난화의 주된 원인으로 언급되는 이산화탄소 저감에 관한 기술 개발의 중요성이 증가하게 되었고 이로 인해 이산화탄소 포집, 저장 및 재이용기술(CCUS, Carbon Capture, Utilization and Storage)의 발전을 요구하고 있다. 다양한 이산화탄소 포집, 저장 및 재이용기술 중에서 광물탄산화 기술의 경우에는 적은 에너지를 통해 많은 이산화탄소를 고부가가치 물질로 전환할 수 있다. 기존 연구에서는 고형 폐기물에서 이온을 용출해 사용해왔으며 이는 처리 과정이 복잡하다. 하지만 해수를 사용하게 되면 고농도의 금속 양이온이 해수 속에 용해되어 있어 고형 폐기물을 이용할 때보다 공정이 단순하다. 이 연구는 해수담수화 농축수를 금속양이온공급원으로써 사용하기 위한 기초연구로, 3 M 모노에탄올아민(Monoethanolamine, MEA)을 흡수제로 사용하여 이산화탄소를 우선적으로 포집하였다. 또한 해수농축수를 모사하기 위해, 해수모사파우더를 사용하여 다양한 농도의 해수농축수를 제조하였다. 해수농축수와 포집된 이산화탄소 용액을 반응시켜 탄산염을 생성하였으며 이를 XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), TGA (Thermalgravimetric Analysis)를 통해 탄산염의 생성 경향 및 흡수제의 재이용 가능성을 파악하였다.

Keywords

HHGHHL_2019_v57n4_539_f0001.png 이미지

Fig. 1. Experimental process diagram for this research.

HHGHHL_2019_v57n4_539_f0002.png 이미지

Fig. 2. Schematic diagram of experiments for this research.

HHGHHL_2019_v57n4_539_f0003.png 이미지

Fig. 3. CO2 Loading curves in the absorption, desorption, and re-absorption for different simulated seawater solutions with 3 M MEA solution.

HHGHHL_2019_v57n4_539_f0004.png 이미지

Fig. 5. SEM images for the metal carbonate salts precipitated in in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.

HHGHHL_2019_v57n4_539_f0005.png 이미지

Fig. 4. XRD peaks for the precipitated metal carbonate salt produced by carbonation reaction in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.

HHGHHL_2019_v57n4_539_f0006.png 이미지

Fig. 6. TGA analysis for the metal carbonate salts precipitated in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.

Table 1. Concentration of metal cation and anion in natural and simulated seawater

HHGHHL_2019_v57n4_539_t0001.png 이미지

Table 2. Amount of simulated seawater powder and for making solutions for these experiments and concentration of metal cation with simulated seawater solution

HHGHHL_2019_v57n4_539_t0002.png 이미지

Table 3. CO2 loading values in first absorption and re-absorption step

HHGHHL_2019_v57n4_539_t0003.png 이미지

Table 4. Solubility of sodium carbonate and sodium bicarbonate

HHGHHL_2019_v57n4_539_t0004.png 이미지

Table 5. Conversion yield of converted carbon dioxide to precipitated metal carbonates

HHGHHL_2019_v57n4_539_t0005.png 이미지

References

  1. Rosa, C. M. and Adisa, A., "Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of their Life Cycle Environmental Impacts," J. of $CO_2$ Utilization, 9, 82-102(2015). https://doi.org/10.1016/j.jcou.2014.12.001
  2. Kang, D. W., Lee, M. G., Jo, H. Y., Yoo, Y. S., Lee, S. M. and Park, J. W., "Carbon Capture and Utilization Using Industrial Wastewater under Ambient Conditions," Chem. Eng. J., 308, 1073-1080(2017). https://doi.org/10.1016/j.cej.2016.09.120
  3. Marco, M., Ronny, P. and Giuseppe, S., "Enhanced Coal Bed Methane Recovery," J. Supercrit. Fluids, 47(3), 619-627(2009). https://doi.org/10.1016/j.supflu.2008.08.013
  4. Chen, J., Duan, L., Donat, F., Muller, C., Anthony, E. and Fan, M., "Self-activated, Nanostructured Composite for Improved CaL-CLC Technology," Chem. Eng. J., 351, 1038-1046(2018). https://doi.org/10.1016/j.cej.2018.06.176
  5. Lee, S., Kim, J. W., Chan, S., Bang, J. H. and Lee, S. W., "$CO_2$ Sequestration Technology Through Mineral Carbonation: An Extraction and Carbonation of Blast Slag," J. of $CO_2$ Utilization, 16, 336-345(2016). https://doi.org/10.1016/j.jcou.2016.09.003
  6. Park, S. Y., Seo, J. S. and Kim, T. Y., "Environmental Impacts of Brine from the Seawater Desalination Plants," J. Environ. Impact Assess, 27(1), 17-32(2018). https://doi.org/10.14249/eia.2018.27.1.17
  7. Kang, D. W., Lee, M. G., Jo, H. Y. and Park, J. W., "Carbon Dioxide Utilization Using a Pretreated Brine Solution at Normal Temperature and Pressure," Chem. Eng. J., 286, 1270-1278(2016).
  8. Kim, I. and Svendsen, H. F., "Heat of Absorption of Carbon Dioxide in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions," Ind. Eng. Chem. Res., 46(17), 5803-5809(2007). https://doi.org/10.1021/ie0616489
  9. David, T. W. and David, W., "Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region, South Australia: Significance and Implications," Sedimentology, 52(5), 987-1008(2005). https://doi.org/10.1111/j.1365-3091.2005.00732.x
  10. Dash, S., Kamruddin, M., Ajikumar, K., Tyagi, A. K. and Raj, B., "Nanocrystalline and Metastable Phase Formation in Vaccum Thermal Decomposition of Calcium Carbonate," Thermochimi. Acta, 363(1-2), 129-135(2000). https://doi.org/10.1016/S0040-6031(00)00604-3
  11. Loste, E., Wilson, R. M., Sechadri, R. and Meldrum, F. C., "The Role of Magnesium in Stabilising Amorphous Calcium Carbonate and Controlling Calcite Morphologies," J. Cryst. Growth, 254(1-2), 206-218(2003). https://doi.org/10.1016/S0022-0248(03)01153-9
  12. De Chouden-Sa Nchez, V. and Gonzalez, L. A., "Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of $CaCO_3$ Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism," J. Sediment. Res., 79(6), 363-376(2009). https://doi.org/10.2110/jsr.2009.043
  13. Mcintosh, R. M., Sharp, J. H. and Wilburn, F. W., "The Thermal Decomposition of Dolomite," Thermochimi. Acta, 165(2), 281- 296(1990). https://doi.org/10.1016/0040-6031(90)80228-Q
  14. Rodirguez-Blanco, J., Shaw, S., Bots, P., Roncal-Herrero, T. and Benning, L. G., "The Role of Mg in the Crystallization of Monohydrocalcite," Geochim. Cosmochim. Acta, 127, 204-220(2014). https://doi.org/10.1016/j.gca.2013.11.034
  15. Basfar, A. A. and Bad, H. J., "Influence of Magnesium Hydroide and Huntite Hydromagnesite on Mechanical Properties of Ethylene Vinyl Acetate Compounds Cross-Linked by DiCumyl Peroxide and Ionizing Radiation," J. Fire Sci., 28(2), 161-180(2010). https://doi.org/10.1177/0734904109340765
  16. Marion, G. M., "Carbonate Mineral Solubility at Low Temperatures in the $Na-K-Mg-Ca-H-Cl-SO_4-OH-HCO_3-CO_3-CO_2-H_2O$ System," Geochim. Cosmochim. Acta, 65(12), 1883-1896(2001). https://doi.org/10.1016/S0016-7037(00)00588-3
  17. Davies, P. J. and Bubela, B., "The Transformation of Nesquehonite into Hydromagnesite," Chem. Geol., 12(4), 289-300(1973). https://doi.org/10.1016/0009-2541(73)90006-5
  18. Hollingbery, L. A. and Hull, T. R., "The Thermal Decomposition of Huntite and Hydromagnesite - a Review," Thermochim. Acta, 509(1-2), 1-11(2010). https://doi.org/10.1016/j.tca.2010.06.012
  19. Chaiwang, P., Chalermsinsuwan, B. and Piumsomboon, P., "Thermogravimetric Analysis and Chemical Kinetics for Regeneration of Sodium and Potassium Carbonate Solid Sorbents," Chem. Eng. Commun., 203(5), 581-588(2016). https://doi.org/10.1080/00986445.2015.1078796