DOI QR코드

DOI QR Code

Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode

Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering University of Ulsan)
  • Received : 2019.02.23
  • Accepted : 2019.04.09
  • Published : 2019.08.01

Abstract

As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.

고분자전해질 연료전지(PEMFC)의 성능이 개선됨에 따라 생성물인 물과 열의 발생이 증가하고 이를 처리하기 위한 관리기법이 중요해지고 있다. 본 연구에서는 물 관리 기법으로 수소 재순환을 적용하였고, 수소 재순환 유량(flow rate)과 퍼지 간격(purge interval) 및 지속 시간(duration)이 연료전지의 성능에 미치는 영향에 대한 실험을 수행하였다. Purge 조건의 영향을 해석하기 위하여 수소극의 압력, 연료의 습도, 운전 간의 연료 이용 효율과 물 배출 양을 측정하였다. 수소 재순환 유량이 증가할수록 수소극 출구의 압력 저하로 인하여 스택 성능이 낮아졌다. Purge 조건에 따라서 물을 효과적으로 배출하지 못해 순간적인 전압 강하가 발생하거나 혹은 잦은 purge로 인해 수소극의 습도를 유지하지 못하여 성능이 점차적으로 감소하는 것을 확인하였다. Purge 조건 실험을 통하여 수소극의 습도를 유지하고 응축된 물을 충분히 배출할 수 있는 purge interval과 duration을 선정하였고, 이를 통하여 스택의 성능과 연료 이용 효율을 향상시킬 수 있었다.

Keywords

HHGHHL_2019_v57n4_531_f0001.png 이미지

Fig. 1. Schematic diagram of experimental system.

HHGHHL_2019_v57n4_531_f0002.png 이미지

Fig. 2. Relative humidity and decreased pressure in different recirculation flow rate.

HHGHHL_2019_v57n4_531_f0003.png 이미지

Fig. 3. Influence of recirculation flow rate on stack performance without purge (a) averaged stack performance during 15 min (b) stack performance per second at 0.5 SLM and 3 SLM.

HHGHHL_2019_v57n4_531_f0004.png 이미지

Fig. 4. Stack voltage variation by purge duration under dead ended anode system.

HHGHHL_2019_v57n4_531_f0005.png 이미지

Fig. 5. Influence of purge duration on stack performance (a) duration conditions (b) stack performance at startup and (c) stack performance during 3hours.

HHGHHL_2019_v57n4_531_f0006.png 이미지

Fig. 6. Influence of purge duration on (a) anode pressure, (b) fuel flow rate and (c) relative humidity of fuel.

HHGHHL_2019_v57n4_531_f0007.png 이미지

Fig. 7. Influence of purge interval on stack performance (a) purge conditions (b) stack performance at startup and (c) stack performance during 3 hours.

Table 1. Stack specification and test conditions

HHGHHL_2019_v57n4_531_t0001.png 이미지

Table 2. Amount of discharged water and fuel efficiency according to purge duration (During 3 hours)

HHGHHL_2019_v57n4_531_t0002.png 이미지

Table 3. Amount of discharged water and fuel efficiency according to purge interval (During 3 hours)

HHGHHL_2019_v57n4_531_t0003.png 이미지

References

  1. Lewis, J., "Stationary Fuel Cells Insights Into Commercialization," Int. J. Hydrogen Energy, 39, 21896-21901(2014). https://doi.org/10.1016/j.ijhydene.2014.05.177
  2. Wilberforce, T., Alaswad, A., Palumbo, A., Dassisti, M. and Olabi, A. G., "Advances in Stationary and Portable Fuel Cell Applications," Int. J. Hydrogen Energy, 41, 16509-16522(2016). https://doi.org/10.1016/j.ijhydene.2016.02.057
  3. Wee, J. H., "Applications of Proton Exchange Membrane Fuel Cell Systems," Renewable and Sustainable Energy Reviews, 11, 1720-1738(2007). https://doi.org/10.1016/j.rser.2006.01.005
  4. Kordesch, K. and Simader, G., "Fuel Cells and their Applications," New York: VCH. Wiley(1996).
  5. Carrette, L., Friedrich, K. A. and Stimming, U., "Fuel Cells- Fundamentals and Applications," Fuel Cells, 1, 5-39(2001). https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  6. Kitahara, T, Konomi, T. and Nakajima, H., "Microporous Layer Coated Gas Diffusion Layers for Enhanced Performance of Polymer Electrolyte Fuel Cells," J. Power Sources, 195, 2202-2211(2010). https://doi.org/10.1016/j.jpowsour.2009.10.089
  7. Xiong, L. and Manthiram, A., "High Performance Membrane-electrode Assemblies with Ultra-low Pt Loading for Proton Exchange Membrane Fuel Cells," Electrochim. Acta, 50, 3200-3204(2005). https://doi.org/10.1016/j.electacta.2004.11.049
  8. Qi, Z. and Kaufman, A., "Improvement of Water Management by a Microporous Sublayer for PEM Fuel Cells," J. Power Sources, 109, 38-46(2002). https://doi.org/10.1016/S0378-7753(02)00058-7
  9. Ticianelli, E. A., Derouin, C. R., Redondo, A. and Srinivasan, S., "Methods to Advance Technology of Proton Exchange Membrane Fuel Cells," J. Electrochem. Soc., 135, 2209-2214(1988). https://doi.org/10.1149/1.2096240
  10. Kumar, G. S., Raja, M. and Parthasarathy, S., "High Performance Electrodes with Very Low Platinum Loading for Polymer Electrolyte Fuel Cells," Electrochim. Acta, 40, 285-290(1995). https://doi.org/10.1016/0013-4686(94)00270-B
  11. Matsuura, T., Chen, J., Siegel, J. and Stefanopoulou A., "Degradation Phenomena in PEM Fuel Cell With Dead-ended Anode," Int. J. Hydrogen Energy, 38, 11346-11356(2013). https://doi.org/10.1016/j.ijhydene.2013.06.096
  12. Yu, J., Jiang, Z., Hou, M. Liang, D, Yu Xiao, Dou, M., Shao, Z. and Yi, B., "Analysis of the Behavior and Degradation in Proton Exchange Membrane Fuel Cells with a Dead-ended Anode," J. Power Sources., 246, 90-94(2014). https://doi.org/10.1016/j.jpowsour.2013.06.163
  13. Choi, J. W., Hwang, Y. S., Cha, S. W. and Kim, M. S., "Experimental Study on Enhancing the Fuel Efficiency of An Anodic Deadend Mode Polymer Electrolyte Membrane Fuel Cell by Oscillating the Hydrogen," Int. J. Hydrogen Energy, 35, 12469-12479 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.076
  14. Chen, J., Siegel, J., Stefanopoulou, A. and Waldecker, J., "Optimization of Purge Cycle for Dead-ended Anode Fuel Cell Operation," Int. J. Hydrogen Energy, 38, 5092-5105(2013). https://doi.org/10.1016/j.ijhydene.2013.02.022
  15. Belvedere, B., Bianchi, M., Borghetti, A., Pascale A. D., Paolone, M. and Vecci, R., "Experimental Analysis of a PEM Fuel Cell Performance at Variable Load with Anodic Exhaust Management Optimization," Int. J. Hydrogen Energy, 38, 385-393(2013). https://doi.org/10.1016/j.ijhydene.2012.09.147
  16. Gomez, A., Raj, A., Sasmito A. P. and Shamim, T., "Effect of Operating Parameters on the Transient Performance of a Polymer Electrolyte Membrane Fuel Cell Stack with a Dead-end Anode," Applied Energy, 130, 692-701(2014). https://doi.org/10.1016/j.apenergy.2013.12.030
  17. Lin, Y.-F. and Chen, Y.-S., "Experimental Study on the Optimal Purge Duration of a Proton Exchange Membrane Fuel Cell with a Dead-ended Anode," J. Power Sources, 340, 176-182(2017). https://doi.org/10.1016/j.jpowsour.2016.11.039
  18. Yang, Y., Zhang, X., Guo, L. and Liu, H., "Overall and Local Effects of Operating Condtions in PEM Fuel Cells with Deadended Anode," Int. J. Hydrogen Energy, 42, 4690-4698(2017). https://doi.org/10.1016/j.ijhydene.2016.08.091
  19. Ichikawa, Y., Oshima, N., Tabuchi, Y. and Ikezoe, K., "Transient Analysis of Gas Transport in Anode Channel of a Polymer Electrolyte Membrane Fuel Cell with Dead-ended Anode Under Pressure Swing Operation," J. Power Sources, 272, 743-752(2014). https://doi.org/10.1016/j.jpowsour.2014.09.023
  20. Yang, Y., Zhang, X., Guo, L. and Liu, H., "Degradation Mitigation Effects of Pressure Swing in Proton Exchange Membrane Fuel Cells with Dead-ended Anode," Int. J. Hydrogen Energy, 23, 24435-24447(2017).
  21. Yang, Y., Zhang, X., Guo, L. and Liu, H., "Mechanisms of Voltage Spikes and Mitigation Strategies for Proton Exchange Membrane Fuel Cells with Dead-ended Anode Under Pressure Swing Operation," Int. J. Hydrogen Energy, 23, 28578-28587(2017).
  22. Promislow, K., St-Pierre, J. and Wetton, B., "A Simple, Analytic Model of Polymer Electrolyte Membrane Fuel Cell Anode Recirculation at Operating Power Including Nitrogen Crossover," J. Power Sources, 196, 10050-10056(2011). https://doi.org/10.1016/j.jpowsour.2011.08.070
  23. Rabbani, A. and Rokni, M., "Effect of Nitrogen Crossover on Purging Strategy in PEM Fuel Cell Systems," Appl. Energy, 111, 1061-1070(2013). https://doi.org/10.1016/j.apenergy.2013.06.057
  24. Chen, Y.-S., Yang, C.-W. and Lee J.-Y., "Implementation and Evaluation for Anode Purging of a Fuel Cell Based on Nitrogen Concentration," Applied Energy, 113, 1519-1524(2014). https://doi.org/10.1016/j.apenergy.2013.09.028
  25. Perez1, L. C., Ihonen, J., Sousa, J. M. and Mendes, A., "Use of Segmented Cell Operated in Hydrogen Recirculation Mode to Detect Water Accumulation in PEMFC," Fuel Cells, 13, 203-216 (2013). https://doi.org/10.1002/fuce.201200109
  26. Nikiforw, K., Karimaki, H., Keranen T. M. and Ihonen, J., "Optimization Study of Purge Cycle in Proton Exchange Membrane Fuel Cell System," J. Power Sources, 238, 336-344(2013). https://doi.org/10.1016/j.jpowsour.2012.11.153
  27. Koski1, P., Perez1, L. C. and Ihonen, J., "Comparing Anode Gas Recirculation with Hydrogen Purge and Bleed in a Novel PEMFC Laboratory Test Cell Configuration," Fuel Cells, 15, 494-504(2015). https://doi.org/10.1002/fuce.201400102

Cited by

  1. 국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.530