DOI QR코드

DOI QR Code

Analysis of a Gas Mask Using CFD Simulation

CFD모사기법을 이용한 가스 여과기 성능 해석

  • Jeon, Rakyoung (Department of Biological and Chemical Engineering, Hanbat National University) ;
  • Kwon, Kihyun (SG Safety Corporation) ;
  • Yoon, Soonmin (SG Safety Corporation) ;
  • Park, Myungkyu (Agency for Defense Development - The 5th R&D institute 3rd directorate) ;
  • Lee, Changha (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Oh, Min (Department of Biological and Chemical Engineering, Hanbat National University)
  • 전락영 (한밭대학교 화학생명공학과) ;
  • 권기현 (SG생활안전) ;
  • 윤순민 (SG생활안전) ;
  • 박명규 (국방과학연구소 제5기술연구본부 3부) ;
  • 이창하 (연세대학교 화공생명공학과) ;
  • 오민 (한밭대학교 화학생명공학과)
  • Received : 2019.02.20
  • Accepted : 2019.04.17
  • Published : 2019.08.01

Abstract

Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

화학적 무기 중 혈액작용제는 전자전달계 내 효소의 철 이온과 반응하고 세포호흡을 정지시켜 사망을 초래한다. 혈액작용제는 활성탄의 미세공보다 분자크기가 작아 화학적 흡착이 유일한 제독방법이다. 본 연구는 SG 생활안전에서 개발한 SG-1 가스 여과기를 이용하여 혈액작용제 시아노겐 클로라이드(CK) 가스의 유입에 따른 유동해석을 수행하였다. 구리, 은, 아연 및 몰리브데늄 이온이 첨착된 ASZM TEDA 활성탄을 적용하여 가스 여과기 제작 시험 규정에 따라 화학적 흡착 모사를 수행하였으며 흡착 Kinetic을 적용하기 위해 선 수행된 흡착 베드에서 CK 가스 흡착 실험 결과를 분석하였다. 화학적 흡착을 통해 발생되는 가스 여과기 내부 압력강하 및 가스 흡착 질량 등 주요 변수의 동적거동을 예측하였다. CFD에서 다공성 물질을 적용할 때 사용하는 Ergun 방정식 대신 Granular와 Packed bed를 사용하여 활성탄 적용 가능 결과를 확인하였으며 시간에 따른 흡착 및 유속에 따른 흡착의 유동 해석에 대한 동적 모사를 수행하였다.

Keywords

HHGHHL_2019_v57n4_475_f0001.png 이미지

Fig. 1. CK gas adsorption experiment equipment.

HHGHHL_2019_v57n4_475_f0002.png 이미지

Fig. 2. CK gas adsorption breakthrough curve.

HHGHHL_2019_v57n4_475_f0003.png 이미지

Fig. 3. The amount of CK gas adsorbed according to the time in the adsorption bed.

HHGHHL_2019_v57n4_475_f0004.png 이미지

Fig. 4. SG-1 gas mask geometry.

HHGHHL_2019_v57n4_475_f0005.png 이미지

Fig. 5. CFD simulation framework with UDF.

HHGHHL_2019_v57n4_475_f0006.png 이미지

Fig. 6. Simulation with different inlet flow rate (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.

HHGHHL_2019_v57n4_475_f0007.png 이미지

Fig. 7. SG-1 gas mask internal velocity distribution (a) No activated carbon (b) Activated carbon.

HHGHHL_2019_v57n4_475_f0008.png 이미지

Fig. 8. SG-1 gas mask internal pressure drop (a) No activated carbon (b) Activated carbon.

HHGHHL_2019_v57n4_475_f0009.png 이미지

Fig. 9. Volume fraction of CK gas adsorbed at different simulation time.

HHGHHL_2019_v57n4_475_f0010.png 이미지

Fig. 10. Amount CK gas adsorbed on activated carbon over time: mg.

HHGHHL_2019_v57n4_475_f0011.png 이미지

Fig. 11. Velocity distribution for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.

HHGHHL_2019_v57n4_475_f0012.png 이미지

Fig. 12. Pressure drop for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.

HHGHHL_2019_v57n4_475_f0013.png 이미지

Fig. 13. CK gas volume fraction for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.

Table 1. Design conditions of SG-1 gas mask

HHGHHL_2019_v57n4_475_t0001.png 이미지

Table 2. Simulation method for SG-1 gas mask

HHGHHL_2019_v57n4_475_t0002.png 이미지

Table 3. Simulation condition of SG-1 gas mask

HHGHHL_2019_v57n4_475_t0003.png 이미지

Table 4. Comparison of SG-1 gas mask simulation results with reference

HHGHHL_2019_v57n4_475_t0004.png 이미지

References

  1. Evison, D., Hinsley, D. and Rice, P., "Chemical weapons," Bmj, 324(7333), 332-335(2002). https://doi.org/10.1136/bmj.324.7333.332
  2. Yang, Y.-C., "Chemical Detoxification of Nerve Agent VX," Accounts of Chemical Research, 32(2), 109-115(1999). https://doi.org/10.1021/ar970154s
  3. Anderson, P. D., "Emergency Management of Chemical Weapons Injuries," Journal of Pharmacy Practice, 25(1), 61-68(2012). https://doi.org/10.1177/0897190011420677
  4. Chauhan, S., D'cruz, R., Faruqi, S., Singh, K. K., Varma, S., Singh, M. and Karthik, V., "Chemical Warfare Agents," Environmental Toxicology and Pharmacology, 26(2), 113-122(2008). https://doi.org/10.1016/j.etap.2008.03.003
  5. http://www.dtaq.re.kr/_custom/dtaq/_common/board/download.jsp?attach_no=175106.html
  6. Szinicz, L., "History of Chemical And Biological Warfare Agents," Toxicology, 214(3), 167-181(2005). https://doi.org/10.1016/j.tox.2005.06.011
  7. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02301740.html.
  8. Doughty, D. T. and James, E. G., "Chromium-free Impregnated Activated Carbon for Adsorption of Toxic Gases and/or Vapors," U.S. Patent No. 5,063,196(1991).
  9. Kim, M. W., Kim, Y. S. and Park, Y. H., "Pressure Loss in Canisters with Conditions of Activated Carbon Particles," Fire Science and Engineering, 31(4), 7-11(2017).
  10. Kloubek, J. and Medek, J., "Porous Structure of Impregnated Active Carbons and Its Significance for the Catalytical Activity," Carbon, 24(4), 501-508(1986). https://doi.org/10.1016/0008-6223(86)90275-7
  11. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02297893.html.
  12. Park, D. Y., Park, J. Y. and Yoon, C. S., "Study on Accuracy and Validity Tests for Various Predict ion Models for Gas and Vapor Respirator Cartridge Service Lives," Korean Ind. Hyg. Assoc. J, 9(2), 19-31(1999).
  13. Kloubek, J. and Medek, J., "Porous Structure of Impregnated Active Carbons and Its Significance for the Catalytical Activity," Carbon, 24(4), 501-508(1986). https://doi.org/10.1016/0008-6223(86)90275-7
  14. Rehrmann, J. A. and Leonard, A. J., "Dependence of Gas Adsorption Rates on Carbon Granule Size and Linear Flow Velocity," Carbon, 16(1), 47-51(1978). https://doi.org/10.1016/0008-6223(78)90115-X
  15. Ruch, W. E., Nelson, G. O. and Lindeken, C. L., "Respirator Cartridge Efficiency Studies. I. Experimental Design," American Industrial Hygiene Association Journal, 33(2), 105-109(1972). https://doi.org/10.1080/0002889728506616
  16. Nelson, G. O. and D. J. Hodgkins., "Respirator Cartridge Efficiency Studies. II. Preparation of Test Atmospheres," American Industrial Hygiene Association Journal, 33(2), 110-116(1972). https://doi.org/10.1080/0002889728506617
  17. Shin, C. S., Kim, K. H. and Kang, Y. G., "Adsorption Characteristics of a Respirator Cartridge for Organic Vapor Packed with Activated Carbon Fiber," J. Korean Soc. Saf., 15(2), 84-91(2000).
  18. Wheeler, A. and Robell, A. J., "Performance of Fixed-bed Catalytic Reactors with Poison in the Feed," Journal of Catalysis, 13(3), 299-305(1969). https://doi.org/10.1016/0021-9517(69)90404-7
  19. Su, Y.-C. and Li, C.-C., "Computational Fluid Dynamics Simulations and Tests for Improving Industrial-grade Gas Mask Canisters," Advances in Mechanical Engineering, 7(8), 1687814015596297 (2015).
  20. Li, C.-C., "Aerodynamic Behavior of a Gas Mask Canister Containing Two Porous Media," Chemical Engineering Science, 64(8), 1832-1843(2009). https://doi.org/10.1016/j.ces.2009.01.009
  21. Jonas, L. A. and Joseph, A. R., "The Rate of Gas Adsorption by Activated Carbon," Carbon, 12(2), 95-101(1974). https://doi.org/10.1016/0008-6223(74)90017-7
  22. Mahle, J. J., Peterson, G. W. and Schindler, B. J., "Role of TEDA as An Activated Carbon Impregnant for the Removal of Cyanogen Chloride from Air Streams: Synergistic Effect with Cu (II)," The Journal of Physical Chemistry C, 114(47), 20083-20090(2010). https://doi.org/10.1021/jp106730j
  23. Tripathi, V. S. and Ramachandran, P. K., "Studies on Metal Impregnated Activated Carbon: Complete Pore Structure Analysis," Carbon, 20(1), 25-27(1982). https://doi.org/10.1016/0008-6223(82)90069-0
  24. Fluent, Ansys. "12.0 Theory Guide," Ansys Inc, 5(5), (2009).
  25. http://www.prism.go.kr/homepage/entire/retrieveEntireDetail.do;jsessionid=018BD294EC617D960340A0ADD7E8663E.node02?cond_research_name=&cond_research_start_date=&cond_research_end_date=&research_id=1290000-200400017&pageIndex=3493&leftMenuLevel=160.html.