Fig. 1. CK gas adsorption experiment equipment.
Fig. 2. CK gas adsorption breakthrough curve.
Fig. 3. The amount of CK gas adsorbed according to the time in the adsorption bed.
Fig. 4. SG-1 gas mask geometry.
Fig. 5. CFD simulation framework with UDF.
Fig. 6. Simulation with different inlet flow rate (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.
Fig. 7. SG-1 gas mask internal velocity distribution (a) No activated carbon (b) Activated carbon.
Fig. 8. SG-1 gas mask internal pressure drop (a) No activated carbon (b) Activated carbon.
Fig. 9. Volume fraction of CK gas adsorbed at different simulation time.
Fig. 10. Amount CK gas adsorbed on activated carbon over time: mg.
Fig. 11. Velocity distribution for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.
Fig. 12. Pressure drop for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.
Fig. 13. CK gas volume fraction for different inlet flow rate: (a) 0.04 m/s (b) 0.0947 m/s (c) 0.2 m/s.
Table 1. Design conditions of SG-1 gas mask
Table 2. Simulation method for SG-1 gas mask
Table 3. Simulation condition of SG-1 gas mask
Table 4. Comparison of SG-1 gas mask simulation results with reference
References
- Evison, D., Hinsley, D. and Rice, P., "Chemical weapons," Bmj, 324(7333), 332-335(2002). https://doi.org/10.1136/bmj.324.7333.332
- Yang, Y.-C., "Chemical Detoxification of Nerve Agent VX," Accounts of Chemical Research, 32(2), 109-115(1999). https://doi.org/10.1021/ar970154s
- Anderson, P. D., "Emergency Management of Chemical Weapons Injuries," Journal of Pharmacy Practice, 25(1), 61-68(2012). https://doi.org/10.1177/0897190011420677
- Chauhan, S., D'cruz, R., Faruqi, S., Singh, K. K., Varma, S., Singh, M. and Karthik, V., "Chemical Warfare Agents," Environmental Toxicology and Pharmacology, 26(2), 113-122(2008). https://doi.org/10.1016/j.etap.2008.03.003
- http://www.dtaq.re.kr/_custom/dtaq/_common/board/download.jsp?attach_no=175106.html
- Szinicz, L., "History of Chemical And Biological Warfare Agents," Toxicology, 214(3), 167-181(2005). https://doi.org/10.1016/j.tox.2005.06.011
- http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02301740.html.
- Doughty, D. T. and James, E. G., "Chromium-free Impregnated Activated Carbon for Adsorption of Toxic Gases and/or Vapors," U.S. Patent No. 5,063,196(1991).
- Kim, M. W., Kim, Y. S. and Park, Y. H., "Pressure Loss in Canisters with Conditions of Activated Carbon Particles," Fire Science and Engineering, 31(4), 7-11(2017).
- Kloubek, J. and Medek, J., "Porous Structure of Impregnated Active Carbons and Its Significance for the Catalytical Activity," Carbon, 24(4), 501-508(1986). https://doi.org/10.1016/0008-6223(86)90275-7
- http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02297893.html.
- Park, D. Y., Park, J. Y. and Yoon, C. S., "Study on Accuracy and Validity Tests for Various Predict ion Models for Gas and Vapor Respirator Cartridge Service Lives," Korean Ind. Hyg. Assoc. J, 9(2), 19-31(1999).
- Kloubek, J. and Medek, J., "Porous Structure of Impregnated Active Carbons and Its Significance for the Catalytical Activity," Carbon, 24(4), 501-508(1986). https://doi.org/10.1016/0008-6223(86)90275-7
- Rehrmann, J. A. and Leonard, A. J., "Dependence of Gas Adsorption Rates on Carbon Granule Size and Linear Flow Velocity," Carbon, 16(1), 47-51(1978). https://doi.org/10.1016/0008-6223(78)90115-X
- Ruch, W. E., Nelson, G. O. and Lindeken, C. L., "Respirator Cartridge Efficiency Studies. I. Experimental Design," American Industrial Hygiene Association Journal, 33(2), 105-109(1972). https://doi.org/10.1080/0002889728506616
- Nelson, G. O. and D. J. Hodgkins., "Respirator Cartridge Efficiency Studies. II. Preparation of Test Atmospheres," American Industrial Hygiene Association Journal, 33(2), 110-116(1972). https://doi.org/10.1080/0002889728506617
- Shin, C. S., Kim, K. H. and Kang, Y. G., "Adsorption Characteristics of a Respirator Cartridge for Organic Vapor Packed with Activated Carbon Fiber," J. Korean Soc. Saf., 15(2), 84-91(2000).
- Wheeler, A. and Robell, A. J., "Performance of Fixed-bed Catalytic Reactors with Poison in the Feed," Journal of Catalysis, 13(3), 299-305(1969). https://doi.org/10.1016/0021-9517(69)90404-7
- Su, Y.-C. and Li, C.-C., "Computational Fluid Dynamics Simulations and Tests for Improving Industrial-grade Gas Mask Canisters," Advances in Mechanical Engineering, 7(8), 1687814015596297 (2015).
- Li, C.-C., "Aerodynamic Behavior of a Gas Mask Canister Containing Two Porous Media," Chemical Engineering Science, 64(8), 1832-1843(2009). https://doi.org/10.1016/j.ces.2009.01.009
- Jonas, L. A. and Joseph, A. R., "The Rate of Gas Adsorption by Activated Carbon," Carbon, 12(2), 95-101(1974). https://doi.org/10.1016/0008-6223(74)90017-7
- Mahle, J. J., Peterson, G. W. and Schindler, B. J., "Role of TEDA as An Activated Carbon Impregnant for the Removal of Cyanogen Chloride from Air Streams: Synergistic Effect with Cu (II)," The Journal of Physical Chemistry C, 114(47), 20083-20090(2010). https://doi.org/10.1021/jp106730j
- Tripathi, V. S. and Ramachandran, P. K., "Studies on Metal Impregnated Activated Carbon: Complete Pore Structure Analysis," Carbon, 20(1), 25-27(1982). https://doi.org/10.1016/0008-6223(82)90069-0
- Fluent, Ansys. "12.0 Theory Guide," Ansys Inc, 5(5), (2009).
- http://www.prism.go.kr/homepage/entire/retrieveEntireDetail.do;jsessionid=018BD294EC617D960340A0ADD7E8663E.node02?cond_research_name=&cond_research_start_date=&cond_research_end_date=&research_id=1290000-200400017&pageIndex=3493&leftMenuLevel=160.html.