Fig. 1. Schematic diagram of CO2 absorption technique.
Fig. 2. Schematic diagram of Membrane Permeation Unit.
Fig. 3. Composition of purified H2 obtained via absorption technique with different alkaline solutions (KOH, NH3, MEA) at 1 M concentration.
Fig. 4. Gas permeation and selectivity for PSF Membrane.
Fig. 5. Gas composition in permeate stream after gas permeation test for PSF membrane.
Fig. 6. Power profile with current at different H2 concentration.
Fig. 7. Average maximum power of PEMFC with different CO2 concentration.
Table 1. Summary of gas upgrading by absorption and membrane techniques
Table 2. List of parameters for absorption technique
Table 3. List of parameter for PEMFC application
References
-
Sayari, A., Belmabkhout, Y. and Serna-Guerrero, R., "Flue Gas Treatment via
$CO_2$ Adsorption," Chem. Eng. J., 171(3), 760-774 (2011). https://doi.org/10.1016/j.cej.2011.02.007 -
Yang, H., Fan, S., Lang, X., Wang, Y. and Nie, J., "Economic Comparison of Three Gas Separation Technologies for
$CO_2$ Capture from Power Plant Flue Gas," Chinese J. Chem. Eng., 19(4), 615-620(2011). https://doi.org/10.1016/S1004-9541(11)60031-1 - Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L., "Biogas from Palm Oil Mill Effluent (POME): Opportunities and Challenges from Malaysia's Perspective," Renew. Sustain. Energy Rev., 26, 717-726(2013). https://doi.org/10.1016/j.rser.2013.06.008
-
Kim, K., Ingole, P. G., Kim, J. and Lee, H., "Separation Performance of PEBAX/PEI Hollow Fiber Composite Membrane for
$SO_2$ /$CO_2$ /$N_2$ Mixed Gas," Chem. Eng. J., 233, 242-250(2013). https://doi.org/10.1016/j.cej.2013.08.030 -
Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J. and Diniz da Costa, J. C., "The Removal of
$CO_2$ and$N_2$ from Natural Gas: A Review of Conventional and Emerging Process Technologies," J. Pet. Sci. Eng., 94-95, 123-154(2012). https://doi.org/10.1016/j.petrol.2012.06.016 - Bakonyi, P., Nemestothy, N. and Belafi-Bako, K., "Biohydrogen Purification by Membranes: An Overview on the Operational Conditions Affecting the Performance of Non-porous, Polymeric and Ionic Liquid Based Gas Separation Membranes," Int. J. Hydrogen Energy, 38(23), 9673-9687(2013). https://doi.org/10.1016/j.ijhydene.2013.05.158
-
Diao, Y.-F., Zheng, X.-Y., He, B.-S., Chen, C.-H. and Xu, X.-C., "Experimental Study on Capturing
$CO_2$ Greenhouse Gas by Ammonia Scrubbing," Energy Convers. Manag., 45(13-14), 2283-2296 (2004). https://doi.org/10.1016/j.enconman.2003.10.011 -
Ma, S., Song, H., Wang, M., Yang, J. and Zang, B., "Research on Mechanism of Ammonia Escaping and Control in the Process of
$CO_2$ Capture Using Ammonia Solution," Chem. Eng. Res. Des., 91(7), 1327-1334(2013). https://doi.org/10.1016/j.cherd.2013.01.020 -
Kumbharkar, S. C., Liu, Y. and Li, K., "High Performance Polybenzimidazole Based Asymmetric Hollow Fibre Membranes for
$H_{2}/CO_{2}$ Separation," J. Memb. Sci., 375(1-2), 231-240(2011). https://doi.org/10.1016/j.memsci.2011.03.049 -
Modigell, M., Schumacher, M., Teplyakov V. V. and Zenkevich, V. B., "A Membrane Contactor for Efficient
$CO_2$ Removal in Biohydrogen Production," Desalination, 224(1-3), 186-190(2008). https://doi.org/10.1016/j.desal.2007.02.092 - Badiei, M., Jahim, J. M., Anuar, N. and Sheikh Abdullah, S. R., "Effect of Hydraulic Retention Time on Biohydrogen Production from Palm oil Mill Effluent in Anaerobic Sequencing Batch Reactor," Int. J. Hydrogen Energy, 36(10), 5912-5919(2011). https://doi.org/10.1016/j.ijhydene.2011.02.054
- Chong, P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A. and Hassan, O., "Enhancement of Batch Biohydrogen Production from Prehydrolysate of Acid Treated Oil Palm Empty Fruit Bunch," Int. J. Hydrogen Energy, 38(22), 9592-9599(2013). https://doi.org/10.1016/j.ijhydene.2013.01.154
- Mohamad, I. N., Rohani, R., Shahbudin, M., Masdar, M., Tusirin, M. and Nor, M., "Permeation Properties of Polymeric Membranes for Biohydrogen Purification," Int. J. Hydrogen Energy, 41(7), 4474-4488(2016). https://doi.org/10.1016/j.ijhydene.2015.08.002
-
Maceiras, R., Alves, S. S., Cancela, M. A. and Alvarez, E., "Effect of Bubble Contamination on Gas-liquid Mass Transfer Coefficient on
$CO_2$ Absorption in Amine Solutions," Chem. Eng. J., 137(2), 422-427(2008). https://doi.org/10.1016/j.cej.2007.04.036 - Zhao, B., Su, Y. and Peng, Y., "Effect of Reactor Geometry on Aqueous Ammonia-based Carbon Dioxide Capture in Bubble Column Reactors," Int. J. Greenh. Gas Control, 17, 481-487(2013). https://doi.org/10.1016/j.ijggc.2013.06.009
-
Luis, P., "Use of Monoethanolamine (MEA) for
$CO_2$ Capture in a Global Scenario: Consequences and Alternatives," Desalination, 380, 93-99(2016). https://doi.org/10.1016/j.desal.2015.08.004 -
Spigarelli, B. P. and Kawatra, S. K., "Opportunities and Challenges in Carbon Dioxide Capture," J.
$CO_2$ Util., 1, 69-87(2013). https://doi.org/10.1016/j.jcou.2013.03.002 - Choi, S., Lee, M., Oh, S. and Koo, J., "Gas Sorption and Transport of Ozone-treated Polysulfone," J. Memb. Scie., 221(1-2), 37-46 (2003). https://doi.org/10.1016/S0376-7388(03)00081-4
-
Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F. and Matsuura, T., "State-of-the-art Membrane Based
$CO_2$ Separation Using Mixed Matrix Membranes (MMMs): An Overview on Current Status and Future Directions," Prog. Polym. Sci., 39(5), 817-861(2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003 -
David, O. C., Gorri, D., Urtiaga, A. and Ortiz, I., "Mixed Gas Separation Study for the Hydrogen Recovery from
$H_{2}/CO/N_{2}/CO_{2}$ Post Combustion Mixtures Using a Matrimid Membrane," J. Memb. Sci., 378(1-2), 359-368(2011). https://doi.org/10.1016/j.memsci.2011.05.029 - Ebert, K., Fritsch, D., Koll, J. and Tjahjawiguna, C., "Influence of Inorganic Fillers on the Compaction Behaviour of Porous Polymer Based Membranes," J. Memb. Sci., 233(1-2), 71-78(2004). https://doi.org/10.1016/j.memsci.2003.12.012
- Bakonyi, P., Nemestothy, N., Lanko, J., Rivera, I., Buitron, G. and Belafi-Bako, K., "Simultaneous Biohydrogen Production and Purification in a Double-membrane Bioreactor System," Int. J. Hydrogen Energy, 40(4), 1690-1697(2015). https://doi.org/10.1016/j.ijhydene.2014.12.002
-
Ahluwalia, R. K. and Wang, X., "Effect of CO and
$CO_2$ Impurities on Performance of Direct Hydrogen Polymer-electrolyte Fuel Cells," J. Power Sources, 180(1), 122-131(2008). https://doi.org/10.1016/j.jpowsour.2008.01.087
Cited by
- Comparison of separation performance of absorption column and membrane contactor system for biohydrogen upgraded from palm oil mill effluent fermentation vol.40, pp.3, 2019, https://doi.org/10.1002/ep.13573