Fig. 1. Experimental and simulated (a) C3H8 and (b) C3H6 adsorption isotherms in Co-MOF-74 at 298 K.
Fig. 2. Simulated single component C3H8 and C3H6 adsorption isotherms at three different temperatures: (a) C3H8 in Co-MOF-74; (b) C3H6 in Co-MOF-74; (c) C3H8 in HKUST-1; (d) C3H6 in HKUST-1.
Fig. 3. Simulated single component C3H8 and C3H6 adsorption isotherms for Co-MOF-74 with varied L-J ε parameters: (a) C3H8 at 298 K; (b) C3H6 at 298 K; (c) C3H8 at 323 K; (d) C3H6 at 323 K; (e) C3H8 at 348 K; (b) C3H6 at 348 K.
Fig. 4. Simulated single component C3H8 and C3H6 adsorption isotherms for HKUST-1 with varied L-J ε parameters: (a) C3H8 at 298 K; (b) C3H6 at 298 K; (c) C3H8 at 323 K; (d) C3H6 at 323 K; (e) C3H8 at 348 K; (b) C3H6 at 348 K.
Fig. 5. Relationships between multiplied ε parameters and C3H6 working capacity (5 bar-0.3 bar) or C3H6/C3H8 selectivity (5 bar) for (a) Co-MOF-74 and (b) HKUST-1 at three different temperatures.
Fig. 6. Relationships between multiplied ε parameters and adsorption figure of merit (AFM) for (a) Co-MOF-74 and (b) HKUST-1 at three different temperatures.
Table 1. Surface area, pore volume and crystal density of Co-MOF-74 and HKUST-1 [10]
Table 2. Working capacities and selectivities of pristine Co-MOF-74 and HKUST-1 materials at three different temperatures
References
- Yang, R. T., Adsorbents: fundamentals and applications, John Wiley & Sons(2003).
- Jarvelin, H. and Fair, J. R., "Adsorptive Separation of Propylene Propane Mixtures," Ind. Eng. Chem. Res., 32(10), 2201-2207(1993). https://doi.org/10.1021/ie00022a001
- Grande, C.A., Gascon, J., Kapteijn, F. and Rodrigues, A. E., "Propane/ propylene Separation with Li-exchanged Zeolite 13X," Chem. Eng. J., 160(1), 207-214(2010). https://doi.org/10.1016/j.cej.2010.03.044
- Ferey, G., "Hybrid Porous Solids: Past, Present, Future," Chem. Soc. Rev., 37(1), 191-214(2008). https://doi.org/10.1039/B618320B
- Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M., "The Chemistry and Applications of Metal-organic Frameworks," Science, 341(6149), 1230444(2013). https://doi.org/10.1126/science.1230444
-
Khan, N. A. and Jhung, S. H., "Adsorptive Removal and Separation of Chemicals with Metal-organic Frameworks: Contribution of
${\pi}$ -complexation," J. Hazard. Mater., 325, 198-213(2017). https://doi.org/10.1016/j.jhazmat.2016.11.070 - Lamia, N., Jorge, M., Granato, M. A., Paz, F. A. A., Chevreau, H. and Rodrigues, A. E., "Adsorption of Propane, Propylene and Isobutane on a Metal-organic Framework: Molecular Simulation and Experiment," Chem. Eng. Sci., 64(14), 3246-3259(2009). https://doi.org/10.1016/j.ces.2009.04.010
- Wuttke, S., Bazin, P., Vimont, A., Serre, C., Seo, Y. K., Hwang, Y. K., Chang, J. S., Ferey, G. and Daturi, M., "Discovering the Active Sites for C3 Separation in MIL-100(Fe) by Using Operando IR Spectroscopy," Chem.-Eur. J., 18(38), 11959-11967(2012). https://doi.org/10.1002/chem.201201006
- Bae, Y. S., Lee, C. Y., Kim, K. C., Farha, O. K., Nickias, P., Hupp, J. T., Nguyen, S. T. and Snurr, R. Q., "High Propene/propane Selectivity in Isostructural Metal-organic Frameworks with High Densities of Open Metal Sites," Angew. Chem.-Int. Edit., 51(8), 1857-1860(2012). https://doi.org/10.1002/anie.201107534
- Lee, S. J. and Bae, Y. S., "Can Metal-Organic Frameworks Attain New DOE Targets for On-Board Methane Storage by Increasing Methane Heat of Adsorption?," J. Phys. Chem. C, 118(34), 19833- 19841(2014). https://doi.org/10.1021/jp504983e
- Bae, Y. S. and Snurr, R. Q., "Optimal Isosteric Heat of Adsorption for Hydrogen Storage and Delivery Using Metal-organic Frameworks," Microporous Mesoporous Mat., 132(1-2), 300-303(2010). https://doi.org/10.1016/j.micromeso.2010.02.023
-
Lee, H., Choi, J. H., Yeo, Y. K., Song, H. K. and Na, B. K., "Effect of Evacuation and Rinse Conditions on Performance in PSA Process for
$CO_2$ Recovery," Korean Chem. Eng. Res., 36(6), 809-816(2000). -
Sumer, Z. and Keskin, S., "Ranking of MOF Adsorbents for
$CO_2$ Separations: A Molecular Simulation Study," Ind. Eng. Chem. Res., 55(39), 10404-10419(2016). https://doi.org/10.1021/acs.iecr.6b02585 - Dubbeldam, D., Calero, S., Ellis, D. E. and Snurr, R. Q., "RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials," Mol. Simul., 42(2), 81-101(2016). https://doi.org/10.1080/08927022.2015.1010082
- Mayo, S. L., Olafson, B. D. and Goddard, W. A., "Dreiding - A Generic Force-field for Molecular Simulations," J. Phys. Chem., 94(26), 8897-8909(1990). https://doi.org/10.1021/j100389a010
- Dubbeldam, D., Calero, S., Vlugt, T. J. H., Krishna, R., Maesen, T. L. M. and Smit, B., "United Atom Force Field for Alkanes in Nanoporous Materials," J. Phys. Chem. B, 108(33), 12301-12313 (2004). https://doi.org/10.1021/jp0376727
- Martin, M. G. and Siepmann, J. I., "Transferable Potentials for Phase Equilibria. 1. United-atom Description of n-alkanes," J. Phys. Chem. B, 102(14), 2569-2577(1998). https://doi.org/10.1021/jp972543+
- Da Silva, F. A. and Rodrigues, A. E., "Propylene/propane Separation by Vacuum Swing Adsorption Using 13X Zeolite," AlChE J., 47(2), 341-357(2001). https://doi.org/10.1002/aic.690470212
- Yazaydin, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., LeVan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J. J. and Willis, R. R., "Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach," J. Am. Chem. Soc., 131(51), 18198-18199(2009). https://doi.org/10.1021/ja9057234