DOI QR코드

DOI QR Code

울금(Curcuma longa L.)의 생리활성 및 지질과산화 저해능에 미치는 영향

Effects of Turmeric (Curcuma longa L.) Bioactivity Compounds and Lipid Peroxidation Inhibitory Action

  • Oh, Da-Young (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • 투고 : 2019.05.01
  • 심사 : 2019.06.26
  • 발행 : 2019.06.30

초록

울금(Curcuma longa L.)의 생리활성 및 지질과산화 저해능에 미치는 영향을 확인하고 기능성 식품 소재로 활용 가치를 검토하기 위하여 연구를 수행하였다. 총 카로티노이드(total carotenoid) 함량은 $1.581{\pm}0.005mg$ ${\beta}$-carotene equivalents (BCE)/g dry weight으로 관찰되었다. 70% 메탄올, chloroform:methanol (CM, 2:1, v/v), 에틸 아세테이트(ethyl acetate, EA) 3가지 용매를 사용한 추출 수율은 70% 메탄올(16.54%), CM (5.64%), EA (4.14%) 순으로 나타났다. 총 페놀 함량은 EA, CM 및 70% 메탄올에서 각각 106.287, 90.614 및 18.527 mg gallic acid equivalents (GAE)/g의 함량으로 나타났으며, 추출 용매 별 항산화능은 0.2, 0.4, 0.6, 0.8 mg/mL의 농도로 측정하였고, 양성대조구로 사용된 BHA (butylated hydroxyanisole) 및 trolox 보다는 낮은 항산화능을 보였다. Nitric oxide (NO) 라디칼 소거능은 70% 메탄올에서 28.65~48.43%, CM 18.86~55.10%, EA에서 15.68~56.25%로 관찰되었다. Nitrite ($NO_2$) 소거능은 70% 메탄올, CM 및 EA 순으로 나타나 EA 추출물에서 유의적인 차이를 보이며 강한 $NO_2$ 소거능을 나타내었다(p<0.05). ${\beta}$-carotene 탈색 저해능은 70% 메탄올, CM 및 EA에서 각각 1.64~23.79%, 6.99~41.16% 및 10.20~48.52%로 관찰되었다. 한편, 지질과산화 저해능은 70% 메탄올, CM 및 EA 추출물에서 높게 측정되었다.

The aim was to determine the physiological activity and antioxidant activity by lipid peroxidation inhibitory action of turmeric (Curcuma longa L.). Bioactive compound of total carotenoid $1.581{\pm}0.005mg$ ${\beta}$-carotene equivalents (BCE)/g dry weight. Total phenol content was the highest in the ethyl acetate (EA) extract, followed by chloroform:methanol (CM, 2:1, v/v) and 70% methanol extracts. Antioxidant effects (nitrogen oxide radical scavenging activity, nitrite scavenging activity, ${\beta}$-carotene bleaching assay, and lipid peroxidation inhibition action) of 70% methanol, CM, and EA extract of turmeric. Turmeric extracts yield were 70% methanol 16.54%, CM 5.64%, and EA 4.14%, respectively. Antioxidant activity of the samples exhibited a dose-dependent increase. However, in the current study, none of the samples evaluated showed activity as strong as the BHA (butylated hydroxyanisole) and trolox. Further, nitrite scavenging activity was the highest for the EA extract. As a result of this experiment, indicating their commercial value and potential applications in food and nutraceuticals.

키워드

HGOHBI_2019_v36n2_600_f0001.png 이미지

Fig. 1. Nitric oxide (NO) radical scavenging activity of various solvent extracts from turmeric (Curcuma longa L.).

HGOHBI_2019_v36n2_600_f0002.png 이미지

Fig. 2. Nitrite (NO2) scavenging activity of various solvent extracts from turmeric (Curcuma longa L.).

HGOHBI_2019_v36n2_600_f0003.png 이미지

Fig. 3. Antioxidant activity by β-carotene (BC) bleaching assay of various solvent extracts from turmeric (Curcuma longa L.).

HGOHBI_2019_v36n2_600_f0004.png 이미지

Fig. 4. Lipid peroxidation inhibition (LPI) action of various solvent extracts from turmeric (Curcuma longa L.).

Table 1. Contents of total carotenoid and total phenol in the bioactivity evaluation assays from turmeric (Curcuma longa L.)

HGOHBI_2019_v36n2_600_t0001.png 이미지

Table 2. IC50 values of NO radical scavenging activity, NO2 scavenging activity, antioxidant activity by BC bleaching assay and LPI action by turmeric (Curcuma longa L.)

HGOHBI_2019_v36n2_600_t0002.png 이미지

참고문헌

  1. C. A. C. Araujo, L. L. Leon, "Biological activities of Curcuma longa L.", Mem. Inst. Oswaldo Cruz, Vol. 96, No. 5, pp. 723-728, (2001). https://doi.org/10.1590/S0074-02762001000500026
  2. R. Mohebbati, A. Anaeigoudari, M. R. Khazdair, "The effects of Curcuma longa and curcumin on reproductive systems", Endocrine Regulations, Vol. 51, No. 4, pp. 220-228, (2017). https://doi.org/10.1515/enr-2017-0024
  3. M. S. Kim, S. S. Chun, J. H. Choi, "Effects of turmeric (Curcuma longa L.) on antioxidative systems and oxidative damage in rats fed a high fat and cholesterol diet", J. Korean Soc. Food Sci. Nutr., Vol. 42, No. 4, pp. 570-576, (2013). https://doi.org/10.3746/jkfn.2013.42.4.570
  4. I. Ali, A. Haque, K. Saleem, "Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column", Anal. Methods, Vol. 6, No. 8, pp. 2526-2536, (2014). https://doi.org/10.1039/C3AY41987H
  5. I. Wientarsih, S. Chakeredza, U. ter Meulen, "Influence of curcuma (Curcuma xanthorrhiza Roxb) on lipid metabolism in rabbits", J. Sci. Food Agric., Vol. 82, No. 15, pp. 1875-1880, (2002). https://doi.org/10.1002/jsfa.1235
  6. E. Herrera, R. Jimenez, O. I. Aruoma, S. Hercberg, I. Sanchez-Garcia, C. Fraga, "Aspects of antioxidant foods and supplements in health and disease", Nutr. Rev., Vol. 67, No. s1, pp. S140-144, (2009). https://doi.org/10.1111/j.1753-4887.2009.00177.x
  7. H. Y. Huang, K. J. Helzlsouer, L. J. Appel, "The effects of vitamin C and vitamin E on oxidative DNA damage: results from a randomized controlled trial", Cancer Epidemiol. Biomarkers Prev., Vol. 9, No. 7, pp. 647-652, (2000).
  8. A. Valavanidis, T. Vlachogianni, C. Fiotakis, "8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis", J. Environ. Sci. Health. Environ. Carcinog. Ecotoxicol. Rev., Vol. 27, No. 2, pp. 120-139, (2009). https://doi.org/10.1080/10590500902885684
  9. O. Arrigoni, M. C. De Tullio, "Ascorbic acid: much more than just an antioxidant", Biochimica Biophysica Acta, Vol. 1569, No. 1, pp. 1-9, (2002). https://doi.org/10.1016/S0304-4165(01)00235-5
  10. A. Seifi-Jamadi, H. Kohram, A. Zareh-Shahne, P. Dehghanizadeh, E. Ahmad, "Effect of various concentrations of butylated hydroxyanisole and butylated hydroxytoluene on freezing capacity of Turkman stallion sperm", Anim. Reprod. Sci., Vol. 170, pp. 108-113, (2016). https://doi.org/10.1016/j.anireprosci.2016.04.010
  11. L. Shen, H. Y. Zhang, H. F. Ji, "A thermodynamic investigation of DPPH radical-scavenging mechanisms of folates", J. Mol. Struct. (THEOCHEM), Vol. 856, No. 1-3, pp. 119-123, (2008). https://doi.org/10.1016/j.theochem.2008.01.023
  12. M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, J. Telser, "Free radicals and antioxidants in normal physiological functions and human disease", Int. J. Biochem. Cell Biology., Vol. 39, pp. 44-84, (2007). https://doi.org/10.1016/j.biocel.2006.07.001
  13. R. L. Yang, Y. H. Shi, G. Hao, W. Li, G. W. Le, "Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index", J. Clin. Biochem. Nutr., Vol. 43, No. 3, pp. 154-158, (2008). https://doi.org/10.3164/jcbn.2008044
  14. H. Poudyal, S. Panchal, L. Brown, "Comparison of purple carrot juice and ${\beta}$ -carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome", Br. J. Nutr., Vol. 104, No. 9, pp. 1322-1332, (2010). https://doi.org/10.1017/S0007114510002308
  15. H. S. Black, "Interaction of ascorbic acid and tocopherolon ${\beta}$-carotene modulated carcinogenesis", Hemoglobin, Vol. 34, No. 3, pp. 284-290, (2010). https://doi.org/10.3109/03630269.2010.485873
  16. F. Q. Schafer, H. P. Wang, E. E. Kelley, K. L. Cueno, S. M. Martin, G. R. Buettner, "Comparing ${\beta}$-carotene, vitamin E and nitric oxide as membrane antioxidants", Biol. Chem., Vol. 383, No. 3-4, pp. 671-681, (2002). https://doi.org/10.1515/BC.2002.069
  17. S. Machmudah, M. Goto, "Methods for extraction and analysis of carotenoids", Natural products, Springer Berlin Heidelberg, pp. 3367-3411, (2013).
  18. P. C. Wootton-Beard, A. Moran, L. Ryan, "Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods", Food Res. Intern., Vol. 44, No. 1, pp. 217-224, (2011). https://doi.org/10.1016/j.foodres.2010.10.033
  19. M. N. A. Rao, "Nitric oxide scavenging by curcuminoids", J. Pharm. Pharmacol., Vol. 49, No. 1, pp. 105-107, (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  20. A. Kumaran, R. J. Karunakaran, "Nitric oxide radical scavenging active components from Phyllanthus emblica L", Plant Foods Hum. Nutr., Vol. 61, No. 1, pp. 1-5, (2006). https://doi.org/10.1007/s11130-006-0001-0
  21. A. L. Dawidowicz, M. Olszowy, "Influence of some experimental variables and matrix components in the determination of antioxidant properties by ${\beta}$-carotene bleaching assay: experiments with BHT used as standard antioxidant", Eur. Food Res. Technol., Vol. 231, No. 6, pp. 835-840, (2010). https://doi.org/10.1007/s00217-010-1333-4
  22. N. Siriwardhana, K. W. Lee, Y. J. Jeon, S. H. Kim, J. W. Haw, "Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition", Food Sci. Technol. Int., Vol. 9, No. 5, pp. 339-346, (2003). https://doi.org/10.1177/1082013203039014
  23. F. Ahmed, K. Fanning, M. Netzel, P. M. Schenk, "Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation", Appl. Microbiol. Biotechnol., Vol. 99, No. 22, pp. 9407-9416, (2015). https://doi.org/10.1007/s00253-015-6792-x
  24. S. Mongkolsilp, I. Pongbupakit, N. Sae-Lee, W. Sitthithaworn, "Radical scavenging activity and total phenolic content of medicinal plants used in primary health care", SWU. J. Pharm. Sci., Vol. 9, No. 1, pp. 32-35, (2004).
  25. A. Wojdylo, J. Oszmianski, R. Czemerys, "Antioxidant activity and phenolic compounds in 32 selected herbs", Food Chem., Vol. 105, No. 3, pp. 940-949, (2007). https://doi.org/10.1016/j.foodchem.2007.04.038
  26. H. Rubbo, C. Batthyany, R. Radi, "Nitric oxide: oxygen radical interactions in atherosclerosis", Biol. Res., Vol. 33, No. 2, pp. 167-175, (2000).
  27. G. M. Rosen, P. Tsai, S. Pou, "Mechanism of free-radical generation by nitric oxide synthase", Chem. Rev., Vol. 102, No. 4, pp. 1191-1200, (2002). https://doi.org/10.1021/cr010187s
  28. Y. Sueishi, M. Hori, M. Kita, Y. Kotake, "Nitric oxide (NO) scavenging capacity of natural antioxidants", Food Chem., Vol. 129, No. 3, pp. 866-870, (2011). https://doi.org/10.1016/j.foodchem.2011.05.036
  29. M. W. Byun, H. S. Yook, K. S. Kim, C. K. Chung, "Effects of gamma- irradiation on physiological effectiveness of Korean medicinal herbs", Radiat. Physic. Chem., Vol. 54, No. 3, pp. 291-300, (1999). https://doi.org/10.1016/S0969-806X(98)00233-3
  30. A. L. Dawidowicz, M. Olszowy, "Influence of some experimental variables and matrix components in the determination of antioxidant properties by ${\beta}$-carotene bleaching assay: experiments with BHT used as standard antioxidant", Eur. Food Res. Technol., Vol. 231, No. 6, pp. 835-840, (2010). https://doi.org/10.1007/s00217-010-1333-4
  31. P. Podloucka, K. Berka, G. Fabre, M. Paloncyova, J. L. Duroux, M. Otyepka, P. Trouillas, "Lipid bilayer membrane affinity rationalizes inhibition of lipid peroxidation by a natural lignan antioxidant", J. Physic. Chem. B, Vol. 117, No. 17, pp. 5043-5049, (2013). https://doi.org/10.1021/jp3127829
  32. E. J. Cho, T. Yokozawa, D. Y. Rhyu, H. Y. Kim, N. Shibahara, J. C. Park, "The inhibitory effects of 12 medicinal plants and their component compounds on lipid peroxidation", Am. J. Chinese med., Vol. 31, No. 6, pp. 907-917, (2003). https://doi.org/10.1142/S0192415X03001648