DOI QR코드

DOI QR Code

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) ;
  • Kulikova, Svetlana A. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) ;
  • Myasoedov, Boris F. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences)
  • Received : 2018.08.30
  • Accepted : 2018.12.13
  • Published : 2019.04.25

Abstract

Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Keywords

References

  1. S.V. Stefanovsky, S.V. Yudintsev, S.E. Vinokurov, B.F. Myasoedov, Chemicaltechnological and mineralogical-geochemical aspects of the radioactive waste management, Geochem. Int. 54 (2016) 1136-1156. https://doi.org/10.1134/S001670291613019X
  2. H. Schlenz, S. Neumeier, A. Hirsch, L. Peters, G. Roth, Phosphates as safe containers for radionuclides, in: S. Heuss-Assbichler, G. Amthauer, M. John (Eds.), Highlights in Applied Mineralogy, De Gruyter, Munich, Germany, 2017, pp. 171-196. ISBN 9783110497342.
  3. A.S. Wagh, Chemically Bonded Phosphate Ceramics: Twenty-first Century Materials with Diverse Applications, second ed., Elsevier, Amsterdam, Netherlands, 2016, pp. 1-422. ISBN 978-0-08-100380-0.
  4. S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, Magnesium potassium phosphate compound for immobilization of radioactive waste containing actinide and rare earth elements, Materials 11 (2018) 976, https://doi.org/10.3390/ma11060976.
  5. A.V. Dmitrieva, M.Yu Kalenova, S.A. Kulikova, I.V. Kuznetsov, A.M. Koshcheev, S.E. Vinokurov, Magnesium-potassium phosphate matrix for immobilization of $^{14}C$, Russ. J. Appl. Chem. 91 (4) (2018) 641-646. https://doi.org/10.1134/S107042721804016X
  6. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, S.S. Danilov, I.N. Gromyak, B.F. Myasoedov, Investigation of the leaching behavior of components of the magnesium potassium phosphate matrix after high salt radioactive waste immobilization, J. Radioanal. Nucl. Chem. 315 (2018) 481-486. https://doi.org/10.1007/s10967-018-5698-3
  7. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability, Radiochemistry 60 (2018) 70-78. https://doi.org/10.1134/S1066362218010125
  8. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium potassium phosphate matrix for solidifcation of intermediate level waste containing actinides and ammonium nitrate, Radioactive Waste 2 (3) (2018) 105-113.
  9. B.F. Myasoedov, S.N. Kalmykov, Y.M. Kulyako, S.E. Vinokurov, Nuclear fuel cycle and its impact on the environment, Geochem. Int. 54 (2016) 1156-1167. https://doi.org/10.1134/S0016702916130115
  10. V.A. Shkuropatenko, High level wastes immobilization in ceramic and hydrated phosphate matrix, East Eur. J. Phys. 3 (1) (2016) 49-60.
  11. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovny, B.F. Myasoedov, Low-temperature immobilization of actinides and other components of highlevel waste in magnesium potassium phosphate matrices, J. Nucl. Mater. 385 (2009) 189-192. https://doi.org/10.1016/j.jnucmat.2008.09.053
  12. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovnyi, A.S. Wagh, M.D. Maloney, B.F. Myasoedov, Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes, Radiochemistry 51 (2009) 65-72. https://doi.org/10.1134/S1066362209010159
  13. D. Singh, V.R. Mandalika, S.J. Parulekar, A.S. Wagh, Magnesium potassium phosphate ceramic for $^{99}Tc$ immobilization, J. Nucl. Mater. 348 (2006) 272-282. https://doi.org/10.1016/j.jnucmat.2005.09.026
  14. S. Graeser, W. Postl, H.-P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Struvite-(K), $KM_gPO_4{\cdot}6H_2O$, the potassium equivalent of struvite e a new mineral, Eur. J. Mineral. 20 (2008) 629-633. https://doi.org/10.1127/0935-1221/2008/0020-1810
  15. S.Yu Sayenko, V.A. Shkuropatenko, N.P. Dikiy, R.V. Tarasov, K.A. Ulybkina, O.Y. Surkov, L.M. Litvinenko, Clinoptilolite with cesium immobilization to potassium magnesium phosphate matrix, East Eur. J. Phys. 4 (2) (2017) 37-43.
  16. NP-019-15. Federalnyye Normy I Pravila V Oblasti Ispolzovaniya Atomnoy Energii Sbor, Pererabotka, Khraneniye I Konditsionirovaniye Zhidkikh Radioaktivnykh Otkhodov. Trebovaniya bezopasnosti.
  17. GOST R 52126-2003, Long Time Leach Testing of Solidified Radioactive Waste Forms, Gosstandart of Russia, Moscow, Russia, 2003, pp. 1-8.
  18. G.J. De Groot, H.A. van der Sloot, Determination of leaching characteristics of waste materials leading to environmental product certification, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes: 2nd Volume, vol. 2, ASTM International, West Conshohocken, PA, USA, 1992, pp. 149-170.
  19. R. Malviya, R. Chaundhary, Leaching behavior and immobilization of heavy metals in solidified/stabilized products, J. Hazard Mater. B137 (2006) 207-217. https://doi.org/10.1016/j.jhazmat.2006.01.056
  20. J. Torras, I. Buj, M. Rovira, J. de Pablo, Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements, J. Hazard Mater. 186 (2011) 1954-1960. https://doi.org/10.1016/j.jhazmat.2010.12.093
  21. A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, R.V. Tarasov, M.P. Dykiy, Y.O. Svitlychniy, V.D. Virych, E.A. Ulybkina, Experimental study on cesium immobilization in struvite structures, J. Hazard Mater. 302 (2016) 241-249. https://doi.org/10.1016/j.jhazmat.2015.09.049
  22. A.S. Wagh, M.D. Maloney, Method of waste stabilization with dewatered chemically bonded phosphate ceramics, US Patent No 7 (745) (2010) 679.

Cited by

  1. The Influence of Zeolite (Sokyrnytsya Deposit) on the Physical and Chemical Resistance of a Magnesium Potassium Phosphate Compound for the Immobilization of High-Level Waste vol.24, pp.19, 2019, https://doi.org/10.3390/molecules24193421
  2. Experimental-Computational Approach to Investigate Nanoindentation of Magnesium Potassium Phosphate Hexahydrate (MKP) With X-CT Technique and Finite Element Analysis vol.6, 2019, https://doi.org/10.3389/fmats.2019.00344
  3. Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound vol.13, pp.8, 2019, https://doi.org/10.3390/en13081963
  4. Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound vol.13, pp.15, 2019, https://doi.org/10.3390/en13153789
  5. Nanoscale insight on the durability of magnesium phosphate cement: a molecular dynamics study vol.10, pp.66, 2019, https://doi.org/10.1039/d0ra07717h
  6. Adsorption Behaviors of Palladium Ion from Nitric Acid Solution by a Silica-based Hybrid Donor Adsorbent vol.36, pp.12, 2019, https://doi.org/10.2116/analsci.20p253
  7. Separation of Fission Products in High-Level Liquid Waste vol.37, pp.10, 2019, https://doi.org/10.2116/analsci.highlights2110
  8. The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization vol.11, pp.1, 2019, https://doi.org/10.3390/app11010220