DOI QR코드

DOI QR Code

Drop formation at submerged nozzles: Comparison of aqueous dispersed and organic dispersed cases for TBP-dodecane and nitric acid system

  • Roy, Amitava (Homi Bhabha National Institute) ;
  • Darekar, Mayur (Chemical Engineering Division, Bhabha Atomic Research Centre) ;
  • Singh, K.K. (Homi Bhabha National Institute) ;
  • Shenoy, K.T. (Chemical Engineering Division, Bhabha Atomic Research Centre)
  • Received : 2018.07.17
  • Accepted : 2018.12.21
  • Published : 2019.04.25

Abstract

Understanding the phenomena of formation of single drops is necessary to understand the hydrodynamics in solvent extraction equipment which are used for separation of nuclear materials. In this work, the phenomena of aqueous phase and organic phase drop formation at submerged nozzles are compared by conducting experiments with 30%TBP (v/v) in dodecane as the organic phase and nitric acid as the aqueous phase. Two different nozzles and three different nitric acid concentrations are used. For each nozzle and nitric acid concentration, velocity of the dispersed phase is varied. Drops of aqueous phase formed at downward oriented nozzles submerged in organic phase are observed to be smaller than the drops of organic phase formed at upward oriented nozzles submerged in aqueous phase. Correlations to estimate drop diameter are proposed.

Keywords

References

  1. H.-M. Prasser, C. Bolesch, K. Cramer, D. Ito, P. Papadopoulos, A. Saxena, R. Zboray, Bubbly, slug, and annular two-phase flow in tight-lattice subchannels, Nucl. Eng. Tech. 48 (2016) 847-858. https://doi.org/10.1016/j.net.2016.06.007
  2. A. Rabiee, A.H. Kamalinia, K. Hadad, Two-phase flow field simulation of horizontal steam generators, Nucl. Eng. Tech. 49 (2017) 92-102. https://doi.org/10.1016/j.net.2016.08.008
  3. A.P. Paiva, P. Malik, Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes, J. Radioanal. Nucl. Chem. 261 (2004) 485-496. https://doi.org/10.1023/B:JRNC.0000034890.23325.b5
  4. P. Amani, J. Safdari, A. Gharib, Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model, Prog. Nucl. Energy 98 (2017) 71-84. https://doi.org/10.1016/j.pnucene.2017.02.010
  5. A.O. de Santana, C.C. Dantas, Scale up of the mixer of a mixer-settler model used in a uranium solvent extraction process, J. Radioanal. Nucl. Chem. 189 (1995) 257-269. https://doi.org/10.1007/BF02042604
  6. S. Kumar, D. Sivakumar, B. Kumar, Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction, J. Radioanal. Nucl. Chem. 292 (2012) 1237-1240. https://doi.org/10.1007/s10967-012-1688-z
  7. S. Sarkar, N. Sen, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Effect of operating and geometric parameters on dispersed phase holdup in pulsed disc and doughnut and pulsed sieve plate columns: a comparative study, Chem. Eng. Process 118 (2017) 131-142. https://doi.org/10.1016/j.cep.2017.04.016
  8. M. Jaradat, M. Attarakih, H.-J. Bart, Population balance modeling of pulsed (packed and sieve-plate) extraction columns: coupled hydrodynamic and mass transfer, Ind. Eng. Chem. Res. 50 (24) (2011) 14121-14135. https://doi.org/10.1021/ie201041q
  9. N. Kopriwa, F. Buchbender, J. Ayesteran, M. Kalem, A. Pfennig, A critical review of the application of drop-population balances for the design of solvent extraction columns: I. concept of solving drop-population balances and modelling breakage and coalescence, Solvent Extr. Ion Exch. 30 (2012) 683-723. https://doi.org/10.1080/07366299.2012.700598
  10. M. Kalem, M.Y. Altunok, A. Pfennig, Sedimentation behavior of droplets for the reactive extraction of zinc with D2-HPA, AIChE J. 56 (2010) 160-167. https://doi.org/10.1002/aic.11976
  11. G.S. Luo, H.B. Li, X.J. Tang, J.D. Wang, Drop breakage in a coalescencedispersion pulsed-sieve-plate extraction column, Chem. Eng. J. 102 (2004) 185-191. https://doi.org/10.1016/j.cej.2004.04.003
  12. M. Attarakih, H.B. Jildeh, M. Mickler, H.-J. Bart, A.K. Iftekhar, S. Rajagopalan, The OPOSPM as a nonlinear autocorrelation population balance model for dynamic simulation of liquid extraction columns, Comp. Aided Chem. Eng. 31 (2012) 1216-1220 (2012). https://doi.org/10.1016/B978-0-444-59506-5.50074-2
  13. A.M.I. Al-Rahawi, S.K.A. Dawery, Influence of inlet distributor and column diameter on hydrodynamic characteristics in RDC liquid extraction column, Int. J. Res. Eng. Tech. 5 (2016) 359-372. https://doi.org/10.15623/ijret.2016.0504068
  14. G.F. Scheele, B.J. Meister, Drop formation at low velocities in liquid-liquid systems, AIChE J. 14 (1968) 9-15. https://doi.org/10.1002/aic.690140105
  15. B.J. Meister, G.F. Scheele, Prediction of jet length in immiscible liquid systems, AIChE J. 15 (1969) 689-699. https://doi.org/10.1002/aic.690150512
  16. B.J. Meister, G.F. Scheele, Drop formation from cylindrical jets in immiscible liquid systems, AIChE J. 15 (1969) 700-706. https://doi.org/10.1002/aic.690150513
  17. J.T. Long, Engineering for Nuclear Fuel Reprocessing, La Grange Park e III, American Nuclear Society, 1978.
  18. F. Baumgaertner, L. Finsterwalder, On the transfer mechanism of uranium (VI) and plutonium (IV) nitrate in the system nitric acid-water/tributylphosphatedodecane, J. Phys. Chem. 74 (1970) 108-112. https://doi.org/10.1021/j100696a019
  19. C.B. Hayworth, R.E. Treybal, Drop formation in two liquid phase systems, Ind. Eng. Chem. 42 (1950) 1174-1181. https://doi.org/10.1021/ie50486a030
  20. H.R. Null, H.F. Johnson, Drop formation in liquid-liquid systems from single nozzles, AIChE J. 4 (1958) 273-281. https://doi.org/10.1002/aic.690040308
  21. E.V.L.N. Rao, R. Kumar, N.R. Kuloor, Drop formation studies in liquid - liquid systems, Chem. Eng. Sci. 21 (1966) 867-880. https://doi.org/10.1016/0009-2509(66)85081-9
  22. A. Kumar, S. Hartland, Prediction of drop size produced by a multiorifice distributor, Trans. Inst. Chem. Eng. 60 (1982) 35-39.
  23. F.A. Hamad, M.K. Khan, B.K. Pierscionek, H.H. Bruun, Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system, Can. J. Chem. Eng. 79 (2001) 322-328. https://doi.org/10.1002/cjce.5450790304
  24. R.K. Wanchoo, S.K. Sharma, R. Gupta, Shape of a Newtonian liquid drop moving through an immiscible quiescent non-Newtonian liquid, Chem. Eng. Proc. Process. Inten. 42 (2003) 387-393. https://doi.org/10.1016/S0255-2701(02)00059-4
  25. M.C. Sostarecz, A. Belmonte, Motion and shape of a viscoelastic drop falling through a viscous fluid, J. Fluid Mech. 497 (2003) 235-252. https://doi.org/10.1017/S0022112003006621
  26. M. Wegener, M. Kraume, A.R. Paschedag, Terminal and transient drop rise velocity of single toluene droplets in water, AIChE J. 56 (1) (2010) 2-10. https://doi.org/10.1002/aic.11969
  27. A. Roy, M. Darekar, K.K. Singh, K.T. Shenoy, R.B. Grover, Drop formation at nozzles submerged in quiescient continuous phase: an experimental study with TBP-dodecane and nitric acid system, Nucl. Sci. Technol. 29 (2018) 88. https://doi.org/10.1007/s41365-018-0415-z
  28. L.E.M. de Chazal, J.T. Ryan, Formation of organic drops in water, AIChE J. 17 (1971) 1226-1229. https://doi.org/10.1002/aic.690170531
  29. N.W. Geary, R.G. Rice, Bubble size prediction for rigid and flexible spargers, AIChE J. 37 (1991) 161-168. https://doi.org/10.1002/aic.690370202
  30. W.P. Da Silva, C.M.D.P.S. Cavalcanti, C.G.B. Silva, D.D.P.S. Soares, I.B.J.A.S. Oliveira, C.D.P.S. Silva, LAB Fit Curve Fitting: a software in Portuguese for treatment of experimental data, Rev. Bras. Ensino Fisica 26 (2004) 419-427. https://doi.org/10.1590/S1806-11172004000400018