Fig. 1. Fitness Apps[4]
Fig. 2. Deep learning, Machine learning, ArtificialIntel ligence Comparison[8]
Fig. 3. Structure of Convolutional Neural Network[14]
Fig. 4. RNN Structure[15]
Fig. 5. LSTM Cell Structure[16]
Fig. 6. Distribution of Confidence Values[19]
Fig. 7. Body Keypoint Localization[20]
Fig. 8. Research Model
Fig. 9. Detection Using Confidence Maps
Fig. 10. Association Using Part Affinity Fields
Fig. 11. PCK 0.2
Table 1. Classification Of Mobile Healthcare by Type
Table 2. Healthcare Application Functional Classification
Table 3. System Requirements
References
- K. E. Ko & K. B. Shim. (2017). Trend of Object Recognition and Detection Technology Using Deep Learning. Journal of Control Robotics and Systems, 23(3), 17-24. http://www.dbpia.co.kr/Issue/VOIS00302547
- M. C. Bruno Silva, J. P. C . Rodrigues, I. T. Diez & M. L. Coronado & K. Saleem (2015). Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics, 56( August), 265-272 . DOI : 10.1016/j.jbi.2015.06.003
- Embrain Trend Monitor. (2011). Online health Care Service Survey. Research Report [Online]. www.trendmonitor.co.kr
- M. Y. Lee, J. H. Kang & I. K. Jeon. (2013). A Study on The Effect of Smart Phone Fitness Application(App)'s Service Quality on Satisfaction after use, Trust, Immersion and Willingness to Continue to Use. Journal of The Korean Physical Education Association, 52(2), 379-396. http://www.dbpia.co.kr/Issue/VOIS00288561
- H. Choi & Y. J. Choi. (2013). An Exploratory Study on Success Model for Smart-Phone Game Applications According to Users' Cultural Difference : Focusing on Uncertainty Avoidance and, The Korea Contents Association, 13(2), 62-70 DOI : 10.5392/JKCA.2013.13.02.062
- Z. Zheng. (2015). User Acceptance of Mobile Healthcare Applications: An Integrated Model of UTAUT and HBM Theory, Korea Policy Science Institute, 19(3), 203-236. UCI : G704-000863.2015.19.3.002
- S. H. Lee & S. S. Yoo. (2014). Mobile Healthcare Application Status and Forecast. Information and Communication Broadcasting Policy, 26(17), 1-23. https://www.nkis.re.kr:4445
- H. I. Ku. (2018). Artificial Intelligence and Deep Running Trends. The world of electricity, 67(7), 7-12. http://www.dbpia.co.kr/Publication/PLCT00001506
- Y. LeCun et al. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. DOI : 10.1162/neco.1989.1.4.541
- B. Sven. (2003). Hierarchical Neural Networks for Image Interpretation, London : Springer DOI : 10.1007/b11963
- P. Y. Simard, D. Steinkraus & J. C. Platt. (2017, Aug). Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. Seventh International Conference on Document Analysis and Recognition, (pp. 958 - 962). Edinburgh : IEEE. DOI : 10.1109/ICDAR.2003.1227801
- Y. LeCun, Y. Bengio & G. Hinton. (2015). Deep Learning. Nature, 521, 436-444. DOI : 10.1038/nature14539
- Y. LeCun & Y. Bengio. (1995). The Handbook of Brain Theory and Neural Networks, MA : MIT Press Cambridge. DOI : 10.1016/0928-4869(96)83761-X
- Y. J. Kim. (2017). Analysis of image Big Data using Deep Learning, Domestic Doctor. Chung-Ang University Graduate School. Seoul. http://www.riss.kr/link?id=T14428763
- A. Graves, A. Mohamed & G. Hinton. (2013, March). Speech Recognition with Deep Recurrent Neural Networks. International Conference on Acoustics, Speech and Signal Processing. (pp. 6645-6649). Edinburgh : IEEE. DOI : 10.1109/ICASSP.2013.6638947
- S. C. Lee, H. D. Jung, S. T. Park & S. Kim. (2017). Deep Running. Journal of KSNVE, 27(3), 19-25. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07 171670
- M. Linna, J. Kannala & E. Rahtu. (2018, January). Real-time Human Pose Estimation with Convolutional Neural Networks. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,(pp. 335-342). Madeira : VISIGRAPP DOI: 10.5220/0006624403350342
- V. Ramakrishna, D. Munoz, M . Hebert, J. A. Bagnell & Y. Sheikh. (2014, September). Pose Machines : Articulated Pose Estimation via Inference Machines. 13th European Conference on Computer Vision, (pp 33-47). Zurich : ECCV DOI : 10.1007/978-3-319-10605-2_3
- M. Andriluka, L. Pishchulin, P. Gehler & B. Schiele. (2014, June). 2D Human Pose Estimation : New Benchmark and State of The Art Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitio, (pp. 3686-3693). Columbus : IEEE. DOI : 10.1109/CVPR.2014.471
- A. Bulat & G. Tzimiropoulos. (2016, September). Human Pose Estimation via Convolutional Part Heatmap Regression. 14th European Conference on Computer Vision, (pp. 717-732). Amsterdam : ECCV DOI : 10.1007/978-3-319-46478-7_44