DOI QR코드

DOI QR Code

The evaluation of penetration protective performance using applied element method for reinforced concrete lining

AEM을 이용한 철근콘크리트 라이닝의 관입 방호성능 평가

  • Received : 2019.03.13
  • Accepted : 2019.05.02
  • Published : 2019.05.31

Abstract

Explosion after penetration of a warhead in an underground structure generally causes considerable displacement, breakage and extensive damage to the target. Therefore, in order to reduce the damage effect, it is required to design an underground structure protection against penetration. In this study, major factors for improvement of penetration protection performance of reinforced concrete underground structures using applied element method are divided into strength (concrete UCS) and density (concrete thickness, reinforcement layers, reinforcement diameters, reinforcement spacings). Based on these major factors, this study performed numerical analysis of simulation of dynamic response by penetrators under various conditions and analyzed the results. The results of this study are expected to be used as basis materials to improve penetration protection performance of reinforced concrete underground structures.

지하구조물의 내부에 탄두가 관입 후 폭발할 경우 일반적으로 목표물에 상당한 변위, 파손 및 광범위한 피해를 유발한다. 따라서 이러한 피해효과를 줄이기 위해서는 관입에 저항할 수 있는 지하구조물 방호 설계가 요구된다. 본 연구에서는 응용요소법을 이용한 철근콘크리트 지하구조물의 관입 방호성능 향상을 위한 주요 인자들을 크게 강도(콘크리트 압축강도) 및 밀도(콘크리트 두께, 철근의 피복 층수, 철근의 직경, 철근의 배근간격)로 나누었다. 이를 바탕으로 다양한 조건에서 관통자에 의한 동적응답 시뮬레이션 전산해석 연구를 수행하고 그 결과를 분석하였다. 본 연구 결과는 철근콘크리트 지하구조물의 관입 방호성능 향상을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

TNTNB3_2019_v21n3_377_f0001.png 이미지

Fig. 1. Axial stress-strain relationship

TNTNB3_2019_v21n3_377_f0002.png 이미지

Fig. 2. Model geometry (Hanchak et al., 1992)

TNTNB3_2019_v21n3_377_f0003.png 이미지

Fig. 3. Generation of full model

TNTNB3_2019_v21n3_377_f0004.png 이미지

Fig. 4. Comparison of test data and numerical result

TNTNB3_2019_v21n3_377_f0005.png 이미지

Fig. 5. Uni-axial compressive strength effects on concrete (20~140 MPa)

TNTNB3_2019_v21n3_377_f0006.png 이미지

Fig. 6. Thickness effects on concrete (150~450 mm)

TNTNB3_2019_v21n3_377_f0007.png 이미지

Fig. 7. Layer effects on reinforcement (1~3 layers, Vs = 700 m/s)

TNTNB3_2019_v21n3_377_f0008.png 이미지

Fig. 8. Layer effects on reinforcement (1~3 layers, UCS = 20 MPa)

TNTNB3_2019_v21n3_377_f0009.png 이미지

Fig. 9. Size effects on reinforcement (D10~D35)

TNTNB3_2019_v21n3_377_f0010.png 이미지

Fig. 10. Spacing effects on reinforcement (@150~@300)

Table 1. Comparison of test data and numerical result (48 MPa reinforcement concrete target)

TNTNB3_2019_v21n3_377_t0001.png 이미지

Table 2. Comparison of test data and numerical result (140 MPa reinforcement concrete target)

TNTNB3_2019_v21n3_377_t0002.png 이미지

Table 3. Uni-axial compressive strength effects on concrete (20~140 MPa)

TNTNB3_2019_v21n3_377_t0003.png 이미지

Table 4. Thickness effects on concrete (150~450 mm)

TNTNB3_2019_v21n3_377_t0004.png 이미지

Table 5. Layer effects on reinforcement (1~3 layers)

TNTNB3_2019_v21n3_377_t0005.png 이미지

Table 6. Size effects on reinforcement (D10~D35)

TNTNB3_2019_v21n3_377_t0006.png 이미지

Table 7. Spacing effects on reinforcement (@150~@300)

TNTNB3_2019_v21n3_377_t0007.png 이미지

References

  1. ASI (2010), Extreme loading for structures theoretical manual, Applied Science International, pp. 6-27.
  2. Asprone, D., Nanni, A., Salem, H., Tagel-Din, H. (2010). "Applied element method analysis of porous GFRP barrier subjected to blast", Advances in Structural Engineering, Vol. 13, No. 1, pp. 153-169. https://doi.org/10.1260/1369-4332.13.1.153
  3. Cismasiu, C., Ramos, A.P., Moldovan, I.D., Ferreira, D.F., Filho, J.B. (2017). "Applied element method simulation of experimental failure modes in RC shear walls", Computers and Concrete, Vol. 19, No. 4, pp. 365-374. https://doi.org/10.12989/cac.2017.19.4.365
  4. Hanchak, S.J., Forrestal, M.J., Young, E.R., Ehrgott, J.Q. (1992). "Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths", International Journal of Impact Engineering, Vol. 12, No. 1, pp. 1-7. https://doi.org/10.1016/0734-743X(92)90282-X
  5. Johns, R.V., Clubley, S.K. (2016). "The influence of structural arrangement on long-duration blast response of annealed glazing", International Journal of Solids and Structures, Vol. 97-98, pp. 370-388. https://doi.org/10.1016/j.ijsolstr.2016.07.012
  6. Kernicky, T.P., Whelan, M.J., Weggel, D.C., Rice, C.D. (2014). "Structural identification and damage characterization of a masonry infill wall in a full-scale building subjected to internal blast load", Journal of Structural Engineering, Vol. 141, No. 1, D4014013-1-D4014013-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001158
  7. Khalil, A., Helmy, H., Tageldin, H., Salem, H. (2017). "Ship impact and nonlinear dynamic collapse analysis of a single well observation platform", In Structures Congress 2017 ASCE, pp. 668-680.
  8. Krauthammer, T. (2008), Modern protective structures, CRC Press, pp. 24-38.
  9. Ma, S.J., Jang, P.S. (2006), "An investigation into the actual condition of cast in place concrete lining in domestic tunnel", Journal of the Korean Society of Civil Engineers, Vol. 54, No. 12, pp. 68-79.
  10. Meguro, K., Tagel-Din, H. (2000). "Applied element method for structural analysis: Theory and application for linear materials", Structural Engineering/Earthquake Engineering of JSCE, Vol. 17, No. 1, pp. 21-35.
  11. Meguro, K., Tagel-Din, H. (2001). "Applied element simulation of RC structures under cyclic loading", Journal of Structural Engineering, Vol. 127, No. 11, pp. 1295-1305. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1295)
  12. MND (1998), Design criteria for protective structures, Ministry of National Defense.
  13. Okamura, H., Maekawa K. (1991). Nonlinear analysis and constitutive models of reinforced concrete, Gihodo Co. Ltd, Tokyo.
  14. Ramancharla, P.K., Meguro, K. (2002). "Non-linear static modeling of dip-slip faults for studying ground surface deformation using applied element method", Structural Engineering/Earthquake Engineering of JSCE, Vol. 19, No. 2, pp. 169-178. https://doi.org/10.2208/jsceseee.19.169s
  15. Ramancharla, P.K., Meguro, K. (2006). "3D Numerical modelling of faults for study of ground surface deformation using applied element method", Current Science, Vol. 91, No. 8, pp. 1026-1037.
  16. Ristic, D., Yamada, Y., Iemura, H. (1986), Stress-strain based modeling of hysteretic structures under earthquake induced bending and varying axial loads, Research Report No. 86-ST-01, School of Civil Engineering, Kyoto University.
  17. Salem, H., Mohssen, S., Nishikiori, Y., Hosoda, A. (2016). "Numerical collapse analysis of Tsuyagawa bridge damaged by Tohoku Tsunami", Journal of Performance of Constructed Facilities, Vol. 30, No. 6, pp. 04016065-1-04016065-12. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000925
  18. Seo, G.S. (2005), Protective Engineering, Chung Moon Gak, Paju, pp. 320-334.
  19. TM 5-855-1 (1986), Fundamentals of protective design for conventional weapons, Department of Army.
  20. Young, C.W. (1997), Penetration equations, SAND97-2426, Sandia National Laboratories.