References
- K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
- M. H. Bien, On some subgroups of D* which satisfy a generalized group identity, Bull. Korean Math. Soc. 52 (2015), no. 4, 1353-1363. https://doi.org/10.4134/BKMS.2015.52.4.1353
- M. H. Bien, Subnormal subgroups in division rings with generalized power central group identities, Arch. Math. (Basel) 106 (2016), no. 4, 315-321. https://doi.org/10.1007/s00013-016-0886-2
- M. Chacron and I. N. Herstein, Powers of skew and symmetric elements in division rings, Houston J. Math. 1 (1975), no. 1, 15-27.
- K. Chiba, Skew fields with a nontrivial generalised power central rational identity, Bull. Austral. Math. Soc. 49 (1994), no. 1, 85-90. https://doi.org/10.1017/S0004972700016117
- P. M. Cohn, Skew fields with involution having only one unitary element, Resultate Math. 2 (1979), no. 2, 119-123. https://doi.org/10.1007/BF03322951
- M. A. Dokuchaev and J. Z. Goncalves, Identities on units of algebraic algebras, J. Algebra 250 (2002), no. 2, 638-646. https://doi.org/10.1006/jabr.2001.9071
- V. O. Ferreira and J. Z. Goncalves, Free symmetric and unitary pairs in division rings infinite-dimensional over their centers, Israel J. Math. 210 (2015), no. 1, 297-321. https://doi.org/10.1007/s11856-015-1253-x
- V. O. Ferreira, J. Z. Goncalves, and J. Sanchez, Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras, Internat. J. Algebra Comput. 25 (2015), no. 6, 1075-1106. https://doi.org/10.1142/S0218196715500319
- A. Giambruno, S. Sehgal, and A. Valenti, Group algebras whose units satisfy a group identity, Proc. Amer. Math. Soc. 125 (1997), no. 3, 629-634. https://doi.org/10.1090/S0002-9939-97-03581-8
- J. Z. Goncalves, Free pairs of symmetric and unitary units in normal subgroups of a division ring, J. Algebra Appl. 16 (2017), no. 6, 1750108, 17 pp. https://doi.org/10.1142/S0219498817501080
- J. Z. Goncalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 53 (1986), no. 1, 69-80. https://doi.org/10.1007/BF02772670
- J. Z. Goncalves and M. Shirvani, A survey on free objects in division rings and in division rings with an involution, Comm. Algebra 40 (2012), no. 5, 1704-1723. https://doi.org/10.1080/00927872.2011.554934
- J. Z. Goncalves and E. Tengan, Free group algebras in division rings, Internat. J. Algebra Comput. 22 (2012), no. 5, 1250044, 9 pp.
- I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, IL, 1976.
- I. N. Herstein, Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2, 180-188. https://doi.org/10.1007/BF02760549
- I. N. Herstein, Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 3, 485-489 (1981). https://doi.org/10.1007/BF02849763
- I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan Math. J. 18 (1971), 75-79. https://doi.org/10.1307/mmj/1029000591
- I. N. Herstein, C. Procesi, and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra 36 (1975), no. 1, 128-150. https://doi.org/10.1016/0021-8693(75)90160-X
- T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
- L. Makar-Limanov and P. Malcolmson, Words periodic over the center of a division ring, Proc. Amer. Math. Soc. 93 (1985), no. 4, 590-592. https://doi.org/10.1090/S0002-9939-1985-0776184-4
- L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York, 1980.