DOI QR코드

DOI QR Code

A NOTE ON LOCAL COMMUTATORS IN DIVISION RINGS WITH INVOLUTION

  • Bien, Mai Hoang (Faculty of Mathematics and Computer Science University of Science-VNUHCM)
  • Received : 2018.05.17
  • Accepted : 2018.12.05
  • Published : 2019.05.31

Abstract

In this paper, we consider a conjecture of I. N. Herstein for local commutators of symmetric elements and unitary elements of division rings. For example, we show that if D is a finite dimensional division ring with involution ${\star}$ and if $a{\in}D^*=D{\setminus}\{0\}$ such that local commutators $axa^{-1}x^{-1}$ at a are radical over the center F of D for every $x{\in}D^*$ with $x^{\star}=x$, then either $a{\in}F$ or ${\dim}_F\;D=4$.

Keywords

References

  1. K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
  2. M. H. Bien, On some subgroups of D* which satisfy a generalized group identity, Bull. Korean Math. Soc. 52 (2015), no. 4, 1353-1363. https://doi.org/10.4134/BKMS.2015.52.4.1353
  3. M. H. Bien, Subnormal subgroups in division rings with generalized power central group identities, Arch. Math. (Basel) 106 (2016), no. 4, 315-321. https://doi.org/10.1007/s00013-016-0886-2
  4. M. Chacron and I. N. Herstein, Powers of skew and symmetric elements in division rings, Houston J. Math. 1 (1975), no. 1, 15-27.
  5. K. Chiba, Skew fields with a nontrivial generalised power central rational identity, Bull. Austral. Math. Soc. 49 (1994), no. 1, 85-90. https://doi.org/10.1017/S0004972700016117
  6. P. M. Cohn, Skew fields with involution having only one unitary element, Resultate Math. 2 (1979), no. 2, 119-123. https://doi.org/10.1007/BF03322951
  7. M. A. Dokuchaev and J. Z. Goncalves, Identities on units of algebraic algebras, J. Algebra 250 (2002), no. 2, 638-646. https://doi.org/10.1006/jabr.2001.9071
  8. V. O. Ferreira and J. Z. Goncalves, Free symmetric and unitary pairs in division rings infinite-dimensional over their centers, Israel J. Math. 210 (2015), no. 1, 297-321. https://doi.org/10.1007/s11856-015-1253-x
  9. V. O. Ferreira, J. Z. Goncalves, and J. Sanchez, Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras, Internat. J. Algebra Comput. 25 (2015), no. 6, 1075-1106. https://doi.org/10.1142/S0218196715500319
  10. A. Giambruno, S. Sehgal, and A. Valenti, Group algebras whose units satisfy a group identity, Proc. Amer. Math. Soc. 125 (1997), no. 3, 629-634. https://doi.org/10.1090/S0002-9939-97-03581-8
  11. J. Z. Goncalves, Free pairs of symmetric and unitary units in normal subgroups of a division ring, J. Algebra Appl. 16 (2017), no. 6, 1750108, 17 pp. https://doi.org/10.1142/S0219498817501080
  12. J. Z. Goncalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 53 (1986), no. 1, 69-80. https://doi.org/10.1007/BF02772670
  13. J. Z. Goncalves and M. Shirvani, A survey on free objects in division rings and in division rings with an involution, Comm. Algebra 40 (2012), no. 5, 1704-1723. https://doi.org/10.1080/00927872.2011.554934
  14. J. Z. Goncalves and E. Tengan, Free group algebras in division rings, Internat. J. Algebra Comput. 22 (2012), no. 5, 1250044, 9 pp.
  15. I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, IL, 1976.
  16. I. N. Herstein, Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2, 180-188. https://doi.org/10.1007/BF02760549
  17. I. N. Herstein, Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 3, 485-489 (1981). https://doi.org/10.1007/BF02849763
  18. I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan Math. J. 18 (1971), 75-79. https://doi.org/10.1307/mmj/1029000591
  19. I. N. Herstein, C. Procesi, and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra 36 (1975), no. 1, 128-150. https://doi.org/10.1016/0021-8693(75)90160-X
  20. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  21. L. Makar-Limanov and P. Malcolmson, Words periodic over the center of a division ring, Proc. Amer. Math. Soc. 93 (1985), no. 4, 590-592. https://doi.org/10.1090/S0002-9939-1985-0776184-4
  22. L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York, 1980.