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A NOTE ON LOCAL COMMUTATORS IN

DIVISION RINGS WITH INVOLUTION

Mai Hoang Bien

Abstract. In this paper, we consider a conjecture of I. N. Herstein for

local commutators of symmetric elements and unitary elements of division
rings. For example, we show that if D is a finite dimensional division ring

with involution ? and if a ∈ D∗ = D\{0} such that local commutators
axa−1x−1 at a are radical over the center F of D for every x ∈ D∗ with

x? = x, then either a ∈ F or dimF D = 4.

1. Introduction and main results

Let R be a ring. A function ? : R → R, x 7→ x?, is called an involution if
it is an anti-morphism of degree 2, that is, (x + y)? = x? + y?; (xy)? = y?x?;
and (x?)? = x for every x, y ∈ R. An element x ∈ R is called symmetric (resp.
skew symmetric and unitary) if x? = x (resp. x? = −x and x?x = xx? = 1).
Put S = {x ∈ R | x? = x}, K = {x ∈ R | x? = −x} and N = {x ∈ R | x?x =
xx? = 1}, the set of symmetric elements, the set of skew symmetric elements
and the set of unitary elements respectively. It is natural and interesting to
ask that if a certain subset relating directly to the involution ? (e.g. the set of
symmetric elements) of the ring R is subjected to a certain condition, then how
does it effect to the whole ring R? In this paper, we focus on the case when R
is a division ring with a conjecture from Herstein. In 1978, Herstein posed the
following conjecture.

Conjecture 1.1 ([16, Conjecture 2]). Let D be a division ring with center
F and a an element in the multiplicative group D∗ = D\{0} of D. If for
every x ∈ D∗, the local commutator axa−1x−1 at a is radical over F , that is,
(axa−1x−1)nx ∈ F for some positive integer nx, then a ∈ F .

The answer to Conjecture 1.1 is affirmative in the cases when F is uncount-
able [5, Corollary 2] and when D is a finite dimensional division ring, that is,
dimF D <∞ [3, Corollary 2.10]. In general, the conjecture is still open. There
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are several subjects relating to this conjecture (e.g. see [12,14,16,17,21]). For
example, the subject on the existence of non-cyclic free subgroups in D∗ is
one of them since if a and x generate a non-cyclic free subgroup of D∗, then
axa−1x−1 is not radical over F . These subjects have been then studied in
division rings with involution (e.g. see [4,8,9,11,18]). In particular, [13] could
be a good survey to see what is different between the existence of non-cyclic
free subgroups in division rings and in division rings with involution.

The aim of this work is to show the symmetric version and unitary version
for Conjecture 1.1 in case D is finite dimensional and in case F is uncountable.
We first focus on the case when D is finite dimensional. In fact, we show the
following result.

Theorem 1.2. Let D be a finite dimensional division ring with center F , let
? be an involution of D, and let a be an element of D. Denote by S and N
respectively the set of symmetric elements and the set of unitary elements of
D. Assume that dimF D > 4.

(1) If axa−1x−1 is radical over F for every x ∈ S\{0}, then a ∈ F .
(2) If char(D) 6= 2 and axa−1x−1 is radical over F for every x ∈ N , then

a ∈ F .

Our results except the case when dimF D ≤ 4. In fact, every division ring
whose dimension over its center is 1 is a field, so the theorem still holds and
it is trivial. In the case when dimF D = 4, we give a counterexample. Let
H = R⊕Ri⊕Rj⊕Rk be the real quaternion division ring. One has the center
of H is R. If we define

(a1 + a2i+ a3j + a4k)? = a1 − a2i− a3j − a4k

for every element a1+a2i+a3j+a4k ∈ H, then S, the set of symmetric elements
of H, is R. Hence, axa−1x−1 = 1 for every x ∈ S\{0} and a ∈ H. Now if we
define

(a1 + a2i+ a3j + a4k)# = a1 + a2i+ a3j − a4k

for every element a1 + a2i+ a3j + a4k ∈ H, then # is also an involution of H.
We can show that the set of unitary elements of H with respect to # is

N = {x ∈ H | x#x = xx# = 1} = {cosα+ k sinα | α ∈ [0, 2π)}.

Therefore, kxk−1x−1 = 1 for every x ∈ N but k 6∈ R. Moreover, with the
unitary version, we additionally assume that char(D) 6= 2. The main reason we
just consider the assumption char(D) 6= 2 is from the Cayley parametrization:
with the assumption char(D) 6= 2, one has that if u is unitary, then u =
(1 − k)(1 + k)−1 for some k ∈ K; conversely, if k ∈ K, then (1 − k)(1 + k)−1

is unitary. Hence, in this case, the set of unitary elements is “big enough”.
Observe that in 1979, P. M. Cohn introduced a division ring of characteristic
2 in which 1 is the only unitary element (see [6]).
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Now we move to the case when the center F is uncountable. We separate
this case into two subcases: char(D) = 0 and char(D) > 0. When char(D) = 0,
we receive an analogue of Theorem 1.2.

Theorem 1.3. Let D be a division ring with uncountable center F and char(D)
= 0, let ? be an involution of D and let a be an element of D. Denote by S and
N respectively the set of symmetric elements and the set of unitary elements
of D. Assume that one of following conditions holds:

(1) Local commutators axa−1x−1 at a are radical over F for every x ∈
S\{0}.

(2) Local commutators axa−1x−1 at a are radical over F for every x ∈ N .

If dimF D > 4, then a ∈ F .

Unfortunately, we are unable to show an analogue of Theorems 1.2 and 1.3
in the case when char(D) > 0 and F is uncountable. In following theorem, we
additionally assume all commutators at a are torsion.

Theorem 1.4. Let D be a division ring with uncountable center F and char(D)
> 0, let ? be an involution of D and let a be an element of D. Denote by S and
N respectively the set of symmetric elements and the set of unitary elements
of D. Assume that one of following conditions holds:

(1) axa−1x−1 is torsion for every x ∈ S\{0}.
(2) char(D) > 2 and axa−1x−1 is torsion for every x ∈ N .

If dimF D > 4, then a ∈ F .

The ideas of proofs used in this paper are from the theory of group identities
in algebras (e.g. from [7] and [10]) combining with that from [5].

Our notations in this paper are standard. In particular, for a division ring
D, the center of D is denoted by Z(D) and if S is a subset of D and K is a
subfield of Z(D), then K(S) denotes the division subring of D generated by S
over K.

2. Proofs

To show our main results, we borrow some lemmas.

Lemma 2.1 ([3, Lemma 2.6]). Let D be a finite dimensional division ring and
T a finite subset of D. If P is the prime subfield of D and F1 is the center of
the division subring D1 of D generated by T (over the prime subfield P ), then
F1 is finitely generated over P .

Lemma 2.2 ([19, Lemma 3.1]). Let D be a finite dimensional division ring
whose center F is finitely generated over its prime subfield. Then there exists
a positive integer n such that if a ∈ D with an(a) ∈ F for some positive integer
n(a), then an ∈ F .

Let D′ = [D∗, D∗] be the derived group of D∗, that is, D′ is the subgroup
of D∗ generated by all commutators aba−1b−1 where a, b range over D∗.
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Lemma 2.3. Let D be a finite dimensional division ring whose center F is
finitely generated over its prime subfield. Then there exists a positive integer `
such that if a ∈ D′ with an(a) ∈ F for some positive integer n(a), then a` = 1.

Proof. Assume that dimF D = m. Then D may consider as an F -subalgebra of
EndFD ∼= Mm(F ) via the ring morphism Φ: D → EndFD, a 7→ Φa where Φa
is defined by Φa(x) = ax for every x ∈ D. Now assume that a ∈ D′ such that
an(a) ∈ F for some positive integer n(a). According to Lemma 2.2, there exists
a positive integer n such that an = α ∈ F . Moreover, the images of a and α
are respectively Φ(a) = A ∈ SLm(F ) and Φ(α) = αIm where SLm(F ) is the
special linear group over F . Hence, An = αIm. By taking the determinant of
two sides, one has 1 = αm. Therefore, if ` = mn, then a` = (an)m = αm = 1.
The proof is complete. �

Let D be a division ring and let t be a central indeterminate over D. Denote
by D[t] the polynomial ring D[t] in t over D, by D(t) the division ring of
quotients of D[t], and by D((t)) the Laurent series polynomial ring in t over
D. By [20, Example 1.6], D((t)) is a division ring and D(t) is considered as a
division subring of D((t)). For convenience, we always write an element f(t)
of D((t)) as f(t) = ant

n + an+1t
n+1 + · · · with increasing powers from left to

right.

Lemma 2.4 ([2, Lemma 2.1]). For any a, a1, a2, b ∈ D, there exist c, d ∈ D
such that (1 + at)−1a1(1 + bt)a2 = a1a2(1 + ct)(1 + dt)−1 in D(t).

Lemma 2.5. Let D be a division ring with center F and let f(t) be a polynomial
of the polynomial ring D[t] in a central indeterminate t over D. If there are
infinitely many elements α ∈ F such that f(α) = 0, then f(t) is identically
zero.

Proof. The proof is the Vandermonde argument (or see [22, Propositions 2.3.26
and 2.3.27]). �

Now we are ready to show our main results.

Proof of Theorem 1.2. Let P be the prime subfield of D.
(1) Assume a 6∈ F . We seek a contradiction. By [15, Theorem 2.1.6], F (S) =

D. Since a 6∈ F , there exists b ∈ S such that ba 6= ab. Let D1 = P (a, a?, b)
be the division subring of D generated by a, a? and b over P . Then it is
obvious that P ⊆ S, so D1 is invariant under ?, that is, x? ∈ D1 for every
x ∈ D1. It implies that ? is an involution of D1. Moreover, by Lemma 2.1, D1

is finite dimensional over its center F1 = Z(D1) and F1 is finitely generated
over the prime subfield P . According to Lemma 2.3, there exists a positive
integer n such that (axa−1x−1)n = 1 for every x ∈ S1 = S ∩ D1. Let t be a
central indeterminate and consider the element f1(t) = (a(1+bt)a−1(1+bt)−1)n

in D1(t). According to Lemma 2.4, f1(t) = g(t)h(t)−1 where g(t), h(t) are
polynomials in D1[t]. Put L1 = {x ∈ F1 | x? = x} the fixed subfield of F1
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with respect to the involution ?. It is clear that dimL1
F1 ≤ 2, so dimL1

D1 =
dimL1

F1.dimF1
D1 < ∞. If L1 is finite, then so is D1, which implies that D1

is commutative by Wedderburn’s little Theorem. As a corollary, ab = ba, a
contradiction. Therefore, L1 is infinite. Next, by Lemma 2.5, there exists an
infinite subset A of L1 such that h(α) 6= 0 for every α ∈ A. It implies that
0 = f1(α)−1 = (g(α)−h(α))h(α)−1 for every α ∈ A. Therefore, g(α)−h(α) = 0
for every α ∈ A. By Lemma 2.5 again, g(t) ≡ h(t), equivalently, f1(t) ≡ 1.
Moreover, as an element in the Laurent series division ring D1((t)), the element
(1 + bt)−1 is written as (1 + bt)−1 = 1− bt+ b2t2 + · · ·+ (−1)ibiti + · · · . Hence,

a(1 + bt)a−1(1 + bt)−1 = 1 + (a−1ba− b)t+ · · · .

It implies that

(I) (1 + (a−1ba− b)t+ · · · )n = f1(t) ≡ 1.

If char(D1) = 0, then the left hand side of (I) is 1 + n(a−1ba − b)t + · · · , so
one has a−1ba − b = 0, which contradicts to the hypothesis that ab 6= ba. If
char(D1) = p > 0, then we assume n = pm` with (p, `) = 1. In this case, the
left hand side of (I) is

(1 + (a−1ba− b)t+ · · · )p
m` = (1 + (a−1ba− b)p

m

tp
m

+ · · · )`

= 1 + `(a−1ba− b)p
m

tp
m

+ · · · .

As a corollary, `(a−1ba − b)p
m

= 0, equivalently, aba−1 = b. Again, this
contradicts to the hypothesis. Both cases lead us to a contradiction. The first
statement is complete.

(2) Assume a 6∈ F . Let K be the set of skew elements of D. By [15, Theorem
2.1.10], F (K) = D, which implies that there exists c ∈ K such that ac 6= ca.
We repeat arguments as in the previous part with some modifications. Denote
by D2 = P (a, a?, c) the division subring of D generated by a, a? and c. Then
D2 is a finite dimensional division ring whose center F2 = Z(D2) is finitely
generated over its prime subfield P . Put K2 = {x ∈ D2 | x? = −x} = K ∩D2,
the set of all skew symmetric elements, and N2 = {x ∈ D2 | x?x = 1} = N∩D2,
the set of all unitary elements of D2. According to Lemma 2.3, there exists a
positive integer n such that (axa−1x−1)n = 1 for every x ∈ N2. Put

f2(t) = (a(1− ct)(1 + ct)−1a−1(1 + ct)(1− ct)−1)n

in D2(t). Observe that (1 − cλ)(1 + cλ)−1 ∈ N2 whenever λ ∈ L2 = {x ∈
F2 | x? = x}, so using the same arguments as in the previous part, we have
f2(t) ≡ 1. Now as an element in the Laurent series division ring D2((t)),

a(1− ct)(1 + ct)−1a−1(1 + ct)(1− ct)−1 = 1 + 2(c− aca−1)t+ · · · ,

which implies that

(II) (1 + 2(c− aca−1)t+ · · · )n = f2(t) ≡ 1.
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Again, using the same arguments as in the previous part, we have aca−1−c = 0,
equivalently, ac = ca. A contradiction. Thus, a ∈ F . The second statement is
complete. �

Proof of Theorem 1.3. Put L = {x ∈ F | x? = x}. Because dimL F ≤ 2 and F
is uncountable, L is also uncountable.

(1) Assume that axa−1x−1 is radical over F for every x ∈ S\{0}. We show
that a ∈ F . We first claim that a−1ba − b ∈ F for every b ∈ S. Indeed, let
b ∈ S. Then, for each α ∈ L, one has

(a(1 + bα)a−1(1 + bα)−1)n(α) ∈ F

for some n(α) > 0. Hence, since L is uncountable, there exists a positive n
such that (a(1 + bα)a−1(1 + bα)−1)n ∈ F for infinitely many elements α ∈ F .
Let t be a central indeterminate and consider the element

f(t) = (a(1 + bt)a−1(1 + bt)−1)n

inD(t). According to Lemma 2.4, f(t) = g(t)h(t)−1 where g(t), h(t) are polyno-
mials in D[t]. Since f(α) ∈ F for infinitely many element α ∈ F , by [21, Lemma
1], g(t)h(t)−1 = f(t) ∈ F (t), that is, all coefficients of g(t) and h(t) belong to
F . Moreover, if we write f(t) as an element in D((t)), then f(t) = a0+a1t+· · ·
where ai ∈ F . On the other hand,

(a(1 + bα)a−1(1 + bα)−1)n = (1 + (a−1ba− b)t+ · · · )n

= 1 + n(a−1ba− b)t+ · · · .

Hence, a−1ba− b ∈ F . The claim is shown. Therefore,

(a−1ba− b)c− c(a−1ba− b) = 0

for every b, c ∈ S. Now suppose that a 6∈ F . Then S satisfies a generalized
polynomial identity (a−1xa− x)y − y(a−1xa− x) = 0. By [1, Corollary 6.2.5],
D also satisfies a generalized polynomial identity. It is well known that every
division ring satisfying a generalized polynomial identity is finite dimensional
over its center (e.g. see [1, Theorem 6.1.9]), so D is finite dimensional over
F . In the view of Theorem 1.2, one has dimF D ≤ 4, which contradicts to the
hypothesis. Thus, a ∈ F .

(2) Assume that local commutator axa−1x−1 at a is radical over F for every
x ∈ N . Let K = {x ∈ D | x? = −x} be the set of all skew symmetric elements
of D. Similarly, we claim that a−1ca− c ∈ F for every c ∈ K. Indeed, assume
that c ∈ K. Clearly, (1+cλ)(1−cλ)−1 is unitary whenever λ ∈ L. We consider
the element

g(t) = (a(1− ct)(1 + ct)−1a−1(1 + ct)(1− ct)−1)n

in D(t). Using the same arguments as in the previous, we have g(t) ∈ F (t).
On the other hand, as an element in the Laurent series division ring D((t)),

a(1− ct)(1 + ct)−1a−1(1 + ct)(1− ct)−1 = 1 + 2(c− aca−1)t+ · · · ,



LOCAL COMMUTATOR 665

which implies that 1+2n(c−aca−1)t+ · · · = (1+2(c−aca−1)t+ · · · )n = g(t) ∈
F [[t]]. Therefore a−1ca− c ∈ F . The claim is shown. If a 6∈ F , then K satisfies
a generalized polynomial identity (a−1xa − x)y − y(a−1xa − x) = 0. In the
view of [1, Corollary 6.2.5], D also satisfies a generalized polynomial identity.
Using [1, Theorem 6.1.9] again, dimF D < ∞. By Theorem 1.2, dimF D ≤ 4.
Contradiction. �

Proof of Theorem 1.4. Put p = char(D) and L = {x ∈ F | x? = x}. One has
L is uncountable since dimL F ≤ 2.

(1) Assume that axa−1x−1 is torsion and dimF D > 4. Then, by [15, Theo-
rem 2.1.6], F (S) = D, so there exists b ∈ S such that ab 6= ba. For each α ∈ L,
one has

(a(1 + bα)a−1(1 + bα)−1)n(α) = 1

for some n(α) > 0. Hence, since L is uncountable, there exists a positive n
such that (a(1 + bα)a−1(1 + bα)−1)n = 1 for infinitely many elements α ∈ L.
Let t be a central indeterminate and consider the element

f(t) = (a(1 + bt)a−1(1 + bt)−1)n

in D(t). Using the same arguments as in Theorem 1.2, f(t) ≡ 1 in D(t).
Moreover, f(t) = (a(1 + bt)a−1(1 + bt)−1)n = (1 + (a−1ba − b)t + · · · )n in
D((t)). We assume n = pm` with (p, `) = 1. One has

(1 + (a−1ba− b)t+ · · · )p
m` = (1 + (a−1ba− b)p

m

tp
m

+ · · · )`

= 1 + `(aba−1 − b)p
m

tp
m

+ · · · .

As a corollary, `(aba−1− b)pm = 0, which implies that aba−1 = b, equivalently,
ab = ba. This contradicts to the hypothesis.

(2) Let K be the set of skew symmetric elements of D. Assume that a 6∈ F .
Then, by [15, Theorem 2.1.10], F (K) = D, so there exists c ∈ K such that
ac 6= ca. It is similar to the previous part and Theorem 1.2(2), by replacing
1 + bt by (1− bt)(1 + bt)−1 in the arguments, we conclude that a−1ba− b = 0,
equivalently, ab = ba. A contradiction! �
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[14] J. Z. Gonçalves and E. Tengan, Free group algebras in division rings, Internat. J. Algebra
Comput. 22 (2012), no. 5, 1250044, 9 pp.

[15] I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, IL,

1976.
[16] , Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2,

180–188.

[17] , Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo (2)
29 (1980), no. 3, 485–489 (1981).

[18] I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan
Math. J. 18 (1971), 75–79.

[19] I. N. Herstein, C. Procesi, and M. Schacher, Algebraic valued functions on noncommu-

tative rings, J. Algebra 36 (1975), no. 1, 128–150.
[20] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics,

131, Springer-Verlag, New York, 1991.

[21] L. Makar-Limanov and P. Malcolmson, Words periodic over the center of a division
ring, Proc. Amer. Math. Soc. 93 (1985), no. 4, 590–592.

[22] L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics,

84, Academic Press, Inc., New York, 1980.

Mai Hoang Bien
Faculty of Mathematics and Computer Science

University of Science-VNUHCM
227 Nguyen Van Cu Str., Dist. 5, HCM-City, Vietnam

Email address: mhbien@hcmus.edu.vn, maihoangbien012@yahoo.com


