Browse > Article
http://dx.doi.org/10.4134/BKMS.b180476

A NOTE ON LOCAL COMMUTATORS IN DIVISION RINGS WITH INVOLUTION  

Bien, Mai Hoang (Faculty of Mathematics and Computer Science University of Science-VNUHCM)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.3, 2019 , pp. 659-666 More about this Journal
Abstract
In this paper, we consider a conjecture of I. N. Herstein for local commutators of symmetric elements and unitary elements of division rings. For example, we show that if D is a finite dimensional division ring with involution ${\star}$ and if $a{\in}D^*=D{\setminus}\{0\}$ such that local commutators $axa^{-1}x^{-1}$ at a are radical over the center F of D for every $x{\in}D^*$ with $x^{\star}=x$, then either $a{\in}F$ or ${\dim}_F\;D=4$.
Keywords
division ring; involution; symmetric element; unitary element; local commutator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
2 M. H. Bien, On some subgroups of D* which satisfy a generalized group identity, Bull. Korean Math. Soc. 52 (2015), no. 4, 1353-1363.   DOI
3 M. H. Bien, Subnormal subgroups in division rings with generalized power central group identities, Arch. Math. (Basel) 106 (2016), no. 4, 315-321.   DOI
4 M. Chacron and I. N. Herstein, Powers of skew and symmetric elements in division rings, Houston J. Math. 1 (1975), no. 1, 15-27.
5 K. Chiba, Skew fields with a nontrivial generalised power central rational identity, Bull. Austral. Math. Soc. 49 (1994), no. 1, 85-90.   DOI
6 P. M. Cohn, Skew fields with involution having only one unitary element, Resultate Math. 2 (1979), no. 2, 119-123.   DOI
7 M. A. Dokuchaev and J. Z. Goncalves, Identities on units of algebraic algebras, J. Algebra 250 (2002), no. 2, 638-646.   DOI
8 V. O. Ferreira and J. Z. Goncalves, Free symmetric and unitary pairs in division rings infinite-dimensional over their centers, Israel J. Math. 210 (2015), no. 1, 297-321.   DOI
9 V. O. Ferreira, J. Z. Goncalves, and J. Sanchez, Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras, Internat. J. Algebra Comput. 25 (2015), no. 6, 1075-1106.   DOI
10 A. Giambruno, S. Sehgal, and A. Valenti, Group algebras whose units satisfy a group identity, Proc. Amer. Math. Soc. 125 (1997), no. 3, 629-634.   DOI
11 J. Z. Goncalves, Free pairs of symmetric and unitary units in normal subgroups of a division ring, J. Algebra Appl. 16 (2017), no. 6, 1750108, 17 pp.   DOI
12 I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan Math. J. 18 (1971), 75-79.   DOI
13 J. Z. Goncalves and M. Shirvani, A survey on free objects in division rings and in division rings with an involution, Comm. Algebra 40 (2012), no. 5, 1704-1723.   DOI
14 J. Z. Goncalves and E. Tengan, Free group algebras in division rings, Internat. J. Algebra Comput. 22 (2012), no. 5, 1250044, 9 pp.
15 I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, IL, 1976.
16 I. N. Herstein, Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2, 180-188.   DOI
17 I. N. Herstein, Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 3, 485-489 (1981).   DOI
18 I. N. Herstein, C. Procesi, and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra 36 (1975), no. 1, 128-150.   DOI
19 T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
20 L. Makar-Limanov and P. Malcolmson, Words periodic over the center of a division ring, Proc. Amer. Math. Soc. 93 (1985), no. 4, 590-592.   DOI
21 J. Z. Goncalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 53 (1986), no. 1, 69-80.   DOI
22 L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York, 1980.