Browse > Article
http://dx.doi.org/10.4134/BKMS.b180476

A NOTE ON LOCAL COMMUTATORS IN DIVISION RINGS WITH INVOLUTION  

Bien, Mai Hoang (Faculty of Mathematics and Computer Science University of Science-VNUHCM)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.3, 2019 , pp. 659-666 More about this Journal
Abstract
In this paper, we consider a conjecture of I. N. Herstein for local commutators of symmetric elements and unitary elements of division rings. For example, we show that if D is a finite dimensional division ring with involution ${\star}$ and if $a{\in}D^*=D{\setminus}\{0\}$ such that local commutators $axa^{-1}x^{-1}$ at a are radical over the center F of D for every $x{\in}D^*$ with $x^{\star}=x$, then either $a{\in}F$ or ${\dim}_F\;D=4$.
Keywords
division ring; involution; symmetric element; unitary element; local commutator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
2 M. H. Bien, On some subgroups of D* which satisfy a generalized group identity, Bull. Korean Math. Soc. 52 (2015), no. 4, 1353-1363.   DOI
3 M. H. Bien, Subnormal subgroups in division rings with generalized power central group identities, Arch. Math. (Basel) 106 (2016), no. 4, 315-321.   DOI
4 M. Chacron and I. N. Herstein, Powers of skew and symmetric elements in division rings, Houston J. Math. 1 (1975), no. 1, 15-27.
5 K. Chiba, Skew fields with a nontrivial generalised power central rational identity, Bull. Austral. Math. Soc. 49 (1994), no. 1, 85-90.   DOI
6 P. M. Cohn, Skew fields with involution having only one unitary element, Resultate Math. 2 (1979), no. 2, 119-123.   DOI
7 M. A. Dokuchaev and J. Z. Goncalves, Identities on units of algebraic algebras, J. Algebra 250 (2002), no. 2, 638-646.   DOI
8 V. O. Ferreira and J. Z. Goncalves, Free symmetric and unitary pairs in division rings infinite-dimensional over their centers, Israel J. Math. 210 (2015), no. 1, 297-321.   DOI
9 V. O. Ferreira, J. Z. Goncalves, and J. Sanchez, Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras, Internat. J. Algebra Comput. 25 (2015), no. 6, 1075-1106.   DOI
10 A. Giambruno, S. Sehgal, and A. Valenti, Group algebras whose units satisfy a group identity, Proc. Amer. Math. Soc. 125 (1997), no. 3, 629-634.   DOI
11 J. Z. Goncalves, Free pairs of symmetric and unitary units in normal subgroups of a division ring, J. Algebra Appl. 16 (2017), no. 6, 1750108, 17 pp.   DOI
12 I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, IL, 1976.
13 I. N. Herstein, Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2, 180-188.   DOI
14 I. N. Herstein, Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 3, 485-489 (1981).   DOI
15 I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan Math. J. 18 (1971), 75-79.   DOI
16 I. N. Herstein, C. Procesi, and M. Schacher, Algebraic valued functions on noncommutative rings, J. Algebra 36 (1975), no. 1, 128-150.   DOI
17 T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
18 L. Makar-Limanov and P. Malcolmson, Words periodic over the center of a division ring, Proc. Amer. Math. Soc. 93 (1985), no. 4, 590-592.   DOI
19 J. Z. Goncalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 53 (1986), no. 1, 69-80.   DOI
20 L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York, 1980.
21 J. Z. Goncalves and E. Tengan, Free group algebras in division rings, Internat. J. Algebra Comput. 22 (2012), no. 5, 1250044, 9 pp.
22 J. Z. Goncalves and M. Shirvani, A survey on free objects in division rings and in division rings with an involution, Comm. Algebra 40 (2012), no. 5, 1704-1723.   DOI