DOI QR코드

DOI QR Code

Jamming Effect of Phase-Coded Pulse Compression Radar

위상코드 펄스압축 레이더의 재밍 효과

  • Lim, Joong-Soo (Division of Information Communication, Baekseok University)
  • Received : 2019.03.12
  • Accepted : 2019.05.20
  • Published : 2019.05.28

Abstract

This paper describes the jamming effect of phase-coded pulse compression(PCPC) radar. Barker code radar, a typical PCPC radar, separates transmission pulses into 13 or 31 small pulses and phase modulates and transmits each pulse signal to increase radar detection efficiency and reduce the influence of jamming. Generally, when the radar is subjected to jamming, the detection distance becomes shorter and the detection error rate becomes higher. In the case of noise jamming or carrier jamming on the PCPC radar, the jamming effect is very small for no phase-coded convergence. However, the jamming effect is large in the case of synchronous jamming using the pulse-coded signal as a jamming signal with DRFM. It can be seen that the jamming effect increases when the storage time of the pulse-coded signal is prolonged. This study is considered to be useful for PCPC radar and EW jamming system design.

본 논문은 위상코드 펄스압축(PCPC) 레이더의 재밍 효과에 대해서 기술하였다. 대표적인 PCPC 레이더인 Barker code 레이더는 송신 펄스를 13개 또는 31개의 작은 펄스로 분리하여 각 펄스신호를 위상변조하여 송신함으로써 레이더 탐지효율을 높이고 잡음이나 재밍에 대한 영향을 감소시킨다. 일반적으로 레이더는 재밍을 받으면 탐지거리는 짧아지고 탐지 에러율은 높아진다. PCPC 레이더에 잡음재밍이나 반송파 재밍을 실시한 경우에는 펄스코드 융합이 없어서 재밍 영향이 매우 작았지만, DRFM 등을 이용하여 펄스코드 신호를 복재하여 재밍신호로 사용한 동기재밍 경우에는 재밍효과가 크게 나타났다. 특히 펄스코드 신호 복재시간이 길어지면 재밍효과가 증가되는 것을 볼 수 있다. 본 연구는 펄스압축 레이더와 전자전 재밍장치 재밍신호 설계에 유용하게 활용할 수 있다고 판단된다.

Keywords

JKOHBZ_2019_v9n5_125_f0001.png 이미지

Fig. 1. Phase-Coded Pulse Compression Radar

JKOHBZ_2019_v9n5_125_f0002.png 이미지

Fig. 2. Phase-Coded Pulse Signal

JKOHBZ_2019_v9n5_125_f0003.png 이미지

Fig. 3. Video output at n=7 for PCPC Radar l

JKOHBZ_2019_v9n5_125_f0004.png 이미지

Fig. 4. Repeater Jammer with DRFM

JKOHBZ_2019_v9n5_125_f0005.png 이미지

Fig. 5. Effect of Noise Jamming for PCPC Radar at n=31

JKOHBZ_2019_v9n5_125_f0006.png 이미지

Fig. 6. Effect of CW Jamming for PCPC Radar at n=31

JKOHBZ_2019_v9n5_125_f0007.png 이미지

Fig. 7. Effect of Coherent Jamming for PCPC Radar at n=31 with 1/4 pulse-code

JKOHBZ_2019_v9n5_125_f0008.png 이미지

Fig. 8. Effect of Coherent Jamming for PCPC Radar at n=31 with 1/2 pulse-code

JKOHBZ_2019_v9n5_125_f0009.png 이미지

Fig. 9. Effect of Coherent Jamming for PCPC Radar at n=31 with 1 pulse-code

JKOHBZ_2019_v9n5_125_f0010.png 이미지

Fig. 10. Block Diagram of DRFM

References

  1. B. R. Mahafaza. (2005). Radar Systems Analysis and Design Using Matlab(2nd Edition). Chapman and Hall, 297-300.
  2. D. L. Adamy. (2000). EW 101 A First Course in Electronic Warfare. Artech House, 23-25.
  3. D. C. Schleher. (1999). A Electronic Warfare in the Information Age. Artech House, Boston, 201-214.
  4. J. S. Lim. (2017). Data Convergence of Circular Array Correlative Interferometer Direction finding with 7 Antennas. Journal of the Korea Convergence Society, 8(11), 1-6. https://doi.org/10.15207/JKCS.2017.8.11.001
  5. F. Neri. (2001). Introduction to electronic Defense Systems, 2nd ed. Artech House, Boston, 324-334.
  6. A. D. Mattino. (2012). Introduction to Mordern EW Systems. Artech House, 58-61.
  7. J. S. Lim & G. S. Chae. (2016). Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method. Journal of the Society of Digital Policy & Management, 14(1), 195-201.
  8. J. S. Lim, Y. H. Kim & K. C. Kim. (2017). A Simulator for Analyzing of Correlative Interferometer Direction Finder. Journal of the SMB Convergence Society, 7(2), 53-58.
  9. Y. H. Kim, J. S. Lim, G. S. Chae & K. C. Kim. (2015). An investigation of the Azimuth Error for Correlative Interferometer Direction Finding. Journal of the Korea Convergence Society, 6(5), 249-255. https://doi.org/10.15207/JKCS.2015.6.5.249
  10. D. C. Schleher. (1999). A Electronic Warfare in the Information Age. Artech House, Boston, 219-224.
  11. Y. Xun & Z. Z. Cui. (2009). Two- Dimensional Circular Array Real-Time Phase Interferometer Algorithm and its Correction. 2nd International Congress on Image and Signal Processing, 1-4.
  12. S. Y. Oh, K. C. Cho, J. H. Kim.. J. B. Yun & K. J. Han. (2013). A Self-Organizing Angle-based Routing Protocol for Urban Environments. Journal of the Society of Digital Policy & Management, 11(10), 379-385.
  13. J. Huang & Y. Jiang. (2015). Design and Realization of DRFM System based on FPGA and DSP. IET International Radar Conference.
  14. D. L. Adamy. (2015). EW 104 EW against a New Generation of Threats, Artech House, 319-321.
  15. A. D. Mattino. (2012). Introduction to Modern EW Systems. Artech House, 272-274.