Fig. 1. Schematic and mesh system of horizontal channel
Fig. 2. Heat transfer characteristics according to block position in horizontal channel
Fig. 3. Effects of block width ratio
Fig. 4. Flow field characteristics according to block width ratio
Fig. 5. Effects of block height ratio
Fig. 6. Flow field characteristics according to block height ratio
Fig. 7. Effects of heat flux
Fig. 8. Effects of turbulence generator position
Fig. 9. Flow field characteristics according to turbulence generator position
Table 1. Applied specifications of horizontal channel
Table 2. Quality of mesh
Table 3. Physical properties of air and wall
References
- J. H. Kim, "CFD analysis in an electronic equipment cooling", Journal of Korean Society of Mechanical Engineers, Vol. 47, No. 5, pp. 63-66, 2007. DOI: http://www.dbpia.co.kr/Article/NODE00832587
- C. W. Park, S. I. Chang, P. W. Nam and J. Jurng, "Heat transfer and pressure drop with the turbulence promoter in a vertical PCB channel", Trans. of the Korean Society of Mechanical Engineers, Vol. 20, No. 7, pp. 2277-2288, 1996. DOI: http://www.dbpia.co.kr/Article/NODE00342951
- K. C. Kim, M. H. Park and J. K. Yoon, "The study on heat transfer enhancement using indirect cooling system in the channel heat source", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 11, No. 3, pp. 321-331, 1999. DOI: http://www.dbpia.co.kr/Article/NODE00673424
- I. H. Kim, C. H. Choi and Y. W. Kim "A study for electronic equipment cooling performance using CFD", Proceedings of the Korean Society of Precision Engineering, pp. 546-547, 2014. DOI: http://www.dbpia.co.kr/Article/NODE06141285
- M. Lee and T. W. Kim, "A study on the heat sink with internal structure using peltier module in the forced convection", Journal of the Korea Academia- Industrial Cooperation Society, Vol. 15, No. 6 pp. 3410-3415, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.6.3410
- E. M. Sparrow, J. E. Niethanmer and A. Chaboki, "Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment", International Journal of Heat Mass Transfer, Vol. 25, No. 7, pp 961-973, 1982. DOI: https://doi.org/10.1016/0017-9310(82)90071-0
- J. R. Maughan and F. P. Incropera, "Mixed convection heat transfer with longitudinal fins in a horizontal parallel plate channel: Part I-Numerical results", Journal of Heat Transfer, Vol. 112, No. 3, pp. 612-618, 1990. DOI: https://doi.org/10.1115/1.2910431
- H. M. Jeong, "Three dimensional convective heat transfer and flow characteristics in electronic equipment", Proceedings of the Korean Society of Mechanical Engineers, pp. 81-86, 1995. DOI: http://www.dbpia.co.kr/Article/NODE00331346
- H. V. Mahaney, S. Ramadhyani and F. P. Incropera, "Numerical simulation of three-dimensional mixed convection heat transfer from an array of discrete heat sources in a horizontal rectangular duct", Journal of Numerical Heat Transfer, Part A, Vol. 16, No. 3, pp. 267-286, 1989. DOI: https://doi.org/10.1080/10407788908944717
- Y. Asako and M. Faghri, "Three-dimensional heat transfer analysis of arrays of heated square blocks", International Journal of Heat and Mass Transfer, Vol. 32, No. 2, pp. 395-405, 1989. DOI: https://doi.org/10.1016/0017-9310(89)90185-3
- Y. H. Hung and H. H. Lin, "An effective installation of turbulence promoters for heat transfer augmentation in a vertical rib- heated channel", International Journal of Heat Mass Transfer, Vol. 35, No. 1, pp. 29-42, 1993. DOI: https://doi.org/10.1016/0017-9310(92)90005-D
- ANSYS Fluent Theory Guid, ANSYS Fluent v.16, 2016.
- M. Fiebig, A. Grosse-Gorgemann, Y. Chen and N. K. Mitra, "Conjugate heat transfer of a finned tube Part A: Heat transfer behavior and occurrence of heat transfer reversal", Numerical Heat Transfer, Part A, Vol 28, pp. 133-146, 1994. DOI: https://doi.org/10.1080/10407789508913737