DOI QR코드

DOI QR Code

A Study on Heat Transfer and Pressure Drop Characteristics according to Block Size and Turbulence Generator's Placement in a Horizontal Channel

블록 크기 및 난류발생기 배치에 따른 수평채널내의 열전달 및 압력강하 특성에 관한 연구

  • Seo, Kyu-Won (Dept. of Mechanical Engineering, Graduate School, Gachon Univ.) ;
  • Lim, Jong-Han (Dept. of Mechanical Engineering, Gachon Univ.) ;
  • Yoon, Jun-Kyu (Dept. of Mechanical Engineering, Gachon Univ.)
  • 서규원 (가천대학교 대학원 기계공학과) ;
  • 임종한 (가천대학교 기계공학과) ;
  • 윤준규 (가천대학교 기계공학과)
  • Received : 2019.01.23
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

Recently, as the semiconductor integration technology due to miniaturization and high density of electronic equipment have developed, it is importantly recognized the application of thermal control system in order to release inner heat generated from chips, modules, In this study, we considered the heat transfer and pressure drop characteristics in a horizontal channel with four blocks using k-${\omega}$ SST turbulence model During CFD (Computational Fluid Dynamics) analysis, the parameters applied block width, block height, heat source and turbulence generator placement etc. As the boundary conditions of analysis, the channel inlet temperature and flow velocity were respectively 300 K and 3.84 m/s, the heat flux was $358W/m^2$. As a result, the heat transfer performance was decreased as the block width ratio (w/h) was increased, while it was increased as the block height ratio (h/w) was increased. In addition, as the arrangement of heat source size was increased to high heat flux from low heat flux, it was influenced by heat source size and the heat transfer coefficient showed a tendency to increase, When the turbulence generator was installed in the upper part of block No. 1 position the closely to the channel entrance, the heat transfer characteristics was greatly influenced on the whole of four heating blocks. and in oder to consider the pressure drop characteristics, we are able to select the most appropriate turbulence generator's position.

최근 전자장비의 소형화 및, 고밀도화가 되는 반도체 집적기술의 발달로 인해 칩과 모듈에서 발생되는 내부발열량을 외부로 적절히 방출시키기 위해서 열 제어시스템 적용에 대한 연구의 중요성을 인식하고 있다. 본 연구는 SST k-${\omega}$ 난류모델을 적용하여 4개의 블록이 부착한 수평채널내에서 열전달 및 압력강하 특성을 고찰하였다. CFD 해석시 적용한 매개변수는 블록 폭, 블록 높이, 열원 및 난류발생기 배치이고, 해석시 기본 경계조건은 채널 입구의 온도 및 유속은 300 K, 3.84 m/s, 열유속은 $358W/m^2$으로 하였다. 그 결과로 블록 폭비율(w/h)이 증가할수록 열전달성능이 감소하는 반면에 블록 높이비(h/w)이 증가할수록 열전달특성은 증가하는 경향을 나타내었으며, 열원의 크기배열은 낮은 열유속에서 높은 열유속으로 증가시킬수록 열원의 영향을 받아 열전달계수는 증가하는 경향을 나타냈고, 난류발생기는 채널 입구에 가까운 블록 1번 위치의 상단에 설치했을 경우가 4개의 가열블록 전체에 가장 영향을 크게 미치게 되고, 압력강하특성을 고려할 때 가장 적절한 위치로 선정할 수 있었다.

Keywords

SHGSCZ_2019_v20n4_639_f0001.png 이미지

Fig. 1. Schematic and mesh system of horizontal channel

SHGSCZ_2019_v20n4_639_f0002.png 이미지

Fig. 2. Heat transfer characteristics according to block position in horizontal channel

SHGSCZ_2019_v20n4_639_f0003.png 이미지

Fig. 3. Effects of block width ratio

SHGSCZ_2019_v20n4_639_f0004.png 이미지

Fig. 4. Flow field characteristics according to block width ratio

SHGSCZ_2019_v20n4_639_f0005.png 이미지

Fig. 5. Effects of block height ratio

SHGSCZ_2019_v20n4_639_f0006.png 이미지

Fig. 6. Flow field characteristics according to block height ratio

SHGSCZ_2019_v20n4_639_f0007.png 이미지

Fig. 7. Effects of heat flux

SHGSCZ_2019_v20n4_639_f0008.png 이미지

Fig. 8. Effects of turbulence generator position

SHGSCZ_2019_v20n4_639_f0009.png 이미지

Fig. 9. Flow field characteristics according to turbulence generator position

Table 1. Applied specifications of horizontal channel

SHGSCZ_2019_v20n4_639_t0001.png 이미지

Table 2. Quality of mesh

SHGSCZ_2019_v20n4_639_t0002.png 이미지

Table 3. Physical properties of air and wall

SHGSCZ_2019_v20n4_639_t0003.png 이미지

References

  1. J. H. Kim, "CFD analysis in an electronic equipment cooling", Journal of Korean Society of Mechanical Engineers, Vol. 47, No. 5, pp. 63-66, 2007. DOI: http://www.dbpia.co.kr/Article/NODE00832587
  2. C. W. Park, S. I. Chang, P. W. Nam and J. Jurng, "Heat transfer and pressure drop with the turbulence promoter in a vertical PCB channel", Trans. of the Korean Society of Mechanical Engineers, Vol. 20, No. 7, pp. 2277-2288, 1996. DOI: http://www.dbpia.co.kr/Article/NODE00342951
  3. K. C. Kim, M. H. Park and J. K. Yoon, "The study on heat transfer enhancement using indirect cooling system in the channel heat source", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 11, No. 3, pp. 321-331, 1999. DOI: http://www.dbpia.co.kr/Article/NODE00673424
  4. I. H. Kim, C. H. Choi and Y. W. Kim "A study for electronic equipment cooling performance using CFD", Proceedings of the Korean Society of Precision Engineering, pp. 546-547, 2014. DOI: http://www.dbpia.co.kr/Article/NODE06141285
  5. M. Lee and T. W. Kim, "A study on the heat sink with internal structure using peltier module in the forced convection", Journal of the Korea Academia- Industrial Cooperation Society, Vol. 15, No. 6 pp. 3410-3415, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.6.3410
  6. E. M. Sparrow, J. E. Niethanmer and A. Chaboki, "Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment", International Journal of Heat Mass Transfer, Vol. 25, No. 7, pp 961-973, 1982. DOI: https://doi.org/10.1016/0017-9310(82)90071-0
  7. J. R. Maughan and F. P. Incropera, "Mixed convection heat transfer with longitudinal fins in a horizontal parallel plate channel: Part I-Numerical results", Journal of Heat Transfer, Vol. 112, No. 3, pp. 612-618, 1990. DOI: https://doi.org/10.1115/1.2910431
  8. H. M. Jeong, "Three dimensional convective heat transfer and flow characteristics in electronic equipment", Proceedings of the Korean Society of Mechanical Engineers, pp. 81-86, 1995. DOI: http://www.dbpia.co.kr/Article/NODE00331346
  9. H. V. Mahaney, S. Ramadhyani and F. P. Incropera, "Numerical simulation of three-dimensional mixed convection heat transfer from an array of discrete heat sources in a horizontal rectangular duct", Journal of Numerical Heat Transfer, Part A, Vol. 16, No. 3, pp. 267-286, 1989. DOI: https://doi.org/10.1080/10407788908944717
  10. Y. Asako and M. Faghri, "Three-dimensional heat transfer analysis of arrays of heated square blocks", International Journal of Heat and Mass Transfer, Vol. 32, No. 2, pp. 395-405, 1989. DOI: https://doi.org/10.1016/0017-9310(89)90185-3
  11. Y. H. Hung and H. H. Lin, "An effective installation of turbulence promoters for heat transfer augmentation in a vertical rib- heated channel", International Journal of Heat Mass Transfer, Vol. 35, No. 1, pp. 29-42, 1993. DOI: https://doi.org/10.1016/0017-9310(92)90005-D
  12. ANSYS Fluent Theory Guid, ANSYS Fluent v.16, 2016.
  13. M. Fiebig, A. Grosse-Gorgemann, Y. Chen and N. K. Mitra, "Conjugate heat transfer of a finned tube Part A: Heat transfer behavior and occurrence of heat transfer reversal", Numerical Heat Transfer, Part A, Vol 28, pp. 133-146, 1994. DOI: https://doi.org/10.1080/10407789508913737