DOI QR코드

DOI QR Code

Conceptual Design and Analysis of Rotation-Aligning Bogie Mechanism for Inter-modal Automated Freight Transport Systems

인터모달 자동화물운송시스템을 위한 회전정렬형 대차의 개념설계 및 해석

  • Ahn, Changsun (School of Mechanical Engineering, Pusan National University)
  • 안창선 (부산대학교 기계공학부)
  • Received : 2019.02.08
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

This paper presents the conceptual design and reaction force analysis of a bogie structure for an inter-modal automated transportation system, including road and rail transportation. The proposed system was based on a train with rotation-aligning bogie mechanism that can save significant time and cost. One of the critical issues in conceptual design is the lateral forces applied to the rail caused by the characteristic shapes and structure of the rails and bogie. In particular, the lateral forces are significant in the transition section between the driving and platform sections. This paper provides design guidance for the transition section through reaction force analysis. Based on the analysis result, it was confirmed that the proposed concept can be a valid design candidate of a practical system, and the radius of the rail and the distance between rails are major factors for reaction force generation.

본 논문은 도로와 철도를 포함하는 인터모달 자동화물운송시스템을 위한 화물열차 대차 구조를 소개하고, 레일에 대한 반력 해석 결과를 논한다. 새로운 운송시스템은 시간과 비용을 획기적으로 절약할 수 있는 회전 정렬형 철도차량 방식을 기반으로 한다. 개념 설계 단계에서 고려해야하는 중요한 문제 중의 하나는 궤도 및 대차의 특징적인 형태에서 발생하는 레일에 가해지는 횡력이다. 특히 주행 궤도에서 플랫폼 구간으로 바뀌는 천이구간에서 큰 횡력이 발생하는데, 해석 결과를 바탕으로 향후 시스템 설계 시 참조할 수 있는 설계 가이드를 제공하고자 한다. 해석 결과, 제안하는 구조가 궤도 안정성 및 주행 안정성 면에서 문제가 없어 실제 시스템에 적용할 수 있는 구조이며, 주행 구간에서 플랫폼 구간으로 궤도가 변하는 곳에서 궤도의 선형을 설계할 시, 곡률 반경과 플랫폼 궤도 사이 거리가 중요한 변수임을 밝혀졌다.

Keywords

SHGSCZ_2019_v20n4_632_f0001.png 이미지

Fig. 1. Concept of seamless inter-modal freight transport system

SHGSCZ_2019_v20n4_632_f0002.png 이미지

Fig. 2. Conceptual operation of rotation-aligning bogie mechanism

SHGSCZ_2019_v20n4_632_f0003.png 이미지

Fig. 3. Conceptual operation of automated inter-modal freight transport system

SHGSCZ_2019_v20n4_632_f0004.png 이미지

Fig. 4. Rotation-aligning bogie

SHGSCZ_2019_v20n4_632_f0005.png 이미지

Fig. 5. Rail shape in transition section

SHGSCZ_2019_v20n4_632_f0006.png 이미지

Fig. 6. Configuration of simplified 3-car train

SHGSCZ_2019_v20n4_632_f0007.png 이미지

Fig. 7. Rail model for transition section

SHGSCZ_2019_v20n4_632_f0008.png 이미지

Fig. 8. Dynamic states of train bogies

SHGSCZ_2019_v20n4_632_f0009.png 이미지

Fig. 9. Dynamic states of train cars

SHGSCZ_2019_v20n4_632_f0010.png 이미지

Fig. 10 Forec at each point in transition phase

SHGSCZ_2019_v20n4_632_f0011.png 이미지

Fig. 11. Design variables for rail shape

SHGSCZ_2019_v20n4_632_f0012.png 이미지

Fig. 12. Reaction forces to rail distance

SHGSCZ_2019_v20n4_632_f0013.png 이미지

Fig. 13. Reaction forces to length of transition phase

Table 1. Stability Criteria for Running Train

SHGSCZ_2019_v20n4_632_t0001.png 이미지

References

  1. Hyunglim Choi, Hong-Seung Roh, Yeonju Min, Yongsung Park, (2011)"New Developments for Underground Freight Transportation System in Korea". Journal of the Korean society of civil engineers, Vol.59, No.8, pp. 35-43. Aug. 2011.
  2. Seungjin Shin, Hong-Seung Roh, Sung-Ho Hur, Donghyun Kim, "Freight Transport Demand and Economic Benefit Analysis for Automated Freight Transport System : Focused on GILC in Busan" Journal of Korea Port Economic Association, Vol.33, No.3, pp. 17-33, Sept. 2017. https://doi.org/10.38121/kpea.2017.09.33.3.17
  3. Hong-Seung Roh, A Technology Development Plan on Automated Intermodal Freight Transport System for Cost Saving and Freight Transport System Innovation, The Korea Transport Institute, 2014
  4. Arjan van Binsbergen, Rob Konings, Lori Tavasszy, Ron van Duin, "Innovations in intermodal freight transport: lessons from Europe", in The 93th annual meeting of the Transportation Research Board, Washington, USA, Jan 12-16, 2014. DOI: http://dx.doi.org/10.13140/2.1.1918.4329
  5. J. C. Rijsenbrij, B. A. Pielage, J. G. Visser, State-of-the-art on automated (underground) freight transport systems for the EU-TREND project. Delft University of Technology, Delft, 2006.
  6. Hong-Seung Roh, Jaehak Oh, Seungju Jung, Jinsu Moon, Yeonju Min, Soyoung Jang, A Technical Study on the Automated Container Transport System (AutoCon) between Seoul and Busan in Korea, The Korea Transport Institute, 2010
  7. Seungjin Shin, Hong-Seung Roh, Sung-Ho Hur, "Technical Trends Related to Intermodal Automated Freight Transport Systems (AFTS) ", The Asian Journal of Shipping and Logistics, Vol.34, No.2, pp. 161-169, June 2018. DOI: https://doi.org/10.1016/j.ajsl.2018.06.013
  8. Claus Bendtsen, Per Grove Thomsen, Numerical Solution of Differential Algebraic Equations, Technical University of Denmark, 1999