DOI QR코드

DOI QR Code

Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses

CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성

  • Seo, Choong-Kil (Department of Automotive & Mechanical Engineering, Howon University)
  • 서충길 (호원대학교 자동차기계공학과)
  • Received : 2019.01.31
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The policy-making and technological development for the supply expansion of eco-friendly automobiles has been continuing, but the internal combustion engines still accounts for about 95%. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. This study is a basic study for the post-Euro-VI exhaust response of CNG buses, and it is to investigate the basic characteristics according to Pd substitution transition metal effect, catalyst volume effect and space velocity. A catalysts was prepared and tested using a model gas reactor. The NGOC catalyst with 3Pd exhibited the highest catalytic activity with 22% at $300^{\circ}C$, 48% at $350^{\circ}C$ and about 75% at $500^{\circ}C$. 3Co NGOC containing 3wt% of transition metal was excellent in oxidation ability, and it was small in size of 2nm, and the degree of catalyst dispersion was improved and de-NO/CO conversion was high. The volume of the NGOC-LNT-SCR catalyst system was optimal in the combination of 1.5+0.5+0.5 with a total score of 165, considering $de-CH_4/NOx$ performance and catalyst cost. For SV $14,000h^{-1}$, the $CH_4$ reduction performance was the highest at about 20%, while the SV $56,000h^{-1}$ was the lowest at about 5%. If the space velocity is small, the flow velocity decreases and the time remaining in the catalyst volume become long, so that the harmful gas was reduced.

친환경자동차의 보급 확대를 위한 정책수립과 기술개발이 지속적으로 이루어지고 있는 실정이나 아직까지도 내연기관이 차지하는 비중은 약 95% 차지하고 있다. 화석연료를 기반으로 하는 내연기관의 엄격한 배기가스규제를 충족시키기 위해 자동차와 선박용 후처리장치의 비중이 점차로 증가하고 있다. 이 연구는 CNG 버스의 post Euro-VI 배기대응을 위한 기초연구로써, Pd 대체 전이금속 영향, 촉매 체적 영향 그리고 공간속도에 따른 기초 특성을 파악하는 것이다. 촉매는 제조되었고 모델가스반응장치로 실험하였다. 3Pd가 포함된 NGOC 촉매는 $300^{\circ}C$에서 22%, $350^{\circ}C$에서 48% 그리고 $500^{\circ}C$에서 약 75%의 $CH_4$ 저감 능력을 나타내며 촉매 활성이 가장 높았다. 전이금속 3wt%가 포함된 3Co NGOC는 산화능력이 우수한 물질로써, 2nm급의 작은 사이즈로 촉매 분산도가 향상되어 de-NO/CO 전환율이 높았다. NGOC+LNT+SCR 촉매시스템의 체적은 $De-CH_4/NOx$ 성능과 촉매비용을 고려할 때 Total score가 165를 나타낸 1.5+0.5+0.5 조합이 최적이었다. SV $14,000h^{-1}$일 경우 $CH_4$ 저감 성능은 약 20% 수준으로 가장 높았고, SV $56,000h^{-1}$의 경우가 약 5% 수준으로 가장 낮았다. 공간속도가 작으면 유속이 감소하여 촉매 체적에 잔류하는 시간이 길어지므로 유해가스가 저감되었기 때문이다.

Keywords

SHGSCZ_2019_v20n4_626_f0001.png 이미지

Fig. 1. Schematic diagram of experimental apparatus

SHGSCZ_2019_v20n4_626_f0002.png 이미지

Fig. 2. Conversion rate according to kind of transition metal

SHGSCZ_2019_v20n4_626_f0003.png 이미지

Fig. 3. TEM according to metal transition

SHGSCZ_2019_v20n4_626_f0004.png 이미지

Fig. 4. Conversion rate according to kind of transition metal

SHGSCZ_2019_v20n4_626_f0005.png 이미지

Fig. 5. Conversion rate according to kind of transition meta

SHGSCZ_2019_v20n4_626_f0006.png 이미지

Fig. 6. Schematic diagram of NOx reduction and NH3 generation according to axial length on LNT catalyst

Table 1. Specification of NGOC catalysts

SHGSCZ_2019_v20n4_626_t0001.png 이미지

Table 2. Specification of LNT and SCR catalysts

SHGSCZ_2019_v20n4_626_t0002.png 이미지

Table 3. Model gas components for evaluating the catalysts performance of CNG bus

SHGSCZ_2019_v20n4_626_t0003.png 이미지

Table 4. Evaluation of volume optimization on after-treatment system of NGOC-LNT-SCR

SHGSCZ_2019_v20n4_626_t0004.png 이미지

Table 5. A cost on after-treatment system of NGOC- LNT-SCR

SHGSCZ_2019_v20n4_626_t0005.png 이미지

References

  1. C. K. Seo, "Research on Improvement of $CH_{4}$ Reduction Performance of NGOC for CNG Bus", Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 5, pp. 708-715. 2017. DOI: https://dx.doi.org/10.5762/KAIS.2017.18.5.708
  2. X. Jin, "Removal of Cr(VI) from aqueous Solution by Surfactant-modified Kaolinite", J. Ind. Eng. Chem., Vol. 20, No. 2, pp. 3025-3032, 2014. DOI: https://dx.doi.org/10.1016/j.jiec.2013.11.0.38
  3. L. Huang, Q. Chan, X. Wu, Y. Liu, "The simultaneous Degradation of Phenol and Reduction of Cr(VI) by $TiO_{2}$/CNTs, J. Ind. Eng. Chem., Vol. 18, No. 2, pp. 574-580, 2012. DOI: https://dx.doi.org/10.1016/j.jiec.2011.11.060
  4. A. K. Thakur, G. M. Nisola, L. A. Limjuco, K. J. Parohing, R. E. C. Torrejos, V. K. Shahi, W. J. Chung, "Polyethylenimine-modified mesoporous Silica Adsorbent for simultaneous Removal of CD(II) and Ni (II) from aqueous solution", J. Ind. Eng. Chem., Vol. 49, No. 5, pp. 133-144, 2017. DOI: https://dx.doi.org/10.1016/j.jiec.2017.01.019
  5. D. Wang, Y. Ye, H. Liu, H. Ma, W. Zhang, Chemosphere, "Effect of Alkaline Precipitation on Cr Species of Cr(III)-bearing complexes typically used in the Tannery Industry", Chemosphere, Vol. 193, No. 2, pp. 42-49, 2018. DOI: https://dx.doi.org/10.1016/j.chemosphere.2017.11.006
  6. K. H. Hong, J. H. Kim, K. Chang, J. Kwon, "The Role of Cr on Oxide Formation on Ni-Cr Alloys: A theoretical study", Computational Mater. Sci., Vol. 142, No. 2, pp. 185-191, 2018. DOI: https://dx.doi.org/10.1016/j.commatsci.2017.09.056