DOI QR코드

DOI QR Code

A MATHEMATICAL MODEL OF TRANSMISSION OF PLASMODIUM VIVAX MALARIA WITH A CONSTANT TIME DELAY FROM INFECTION TO INFECTIOUS

  • Kammanee, Athassawat (Applied Analysis Research Unit Department of Mathematics and Statistics Faculty of Science Prince of Songkla University) ;
  • Tansuiy, Orawan (Department of Mathematics and Statistics Faculty of Science Prince of Songkla University)
  • 투고 : 2018.04.20
  • 심사 : 2019.02.20
  • 발행 : 2019.04.30

초록

This research is focused on a continuous epidemic model of transmission of Plasmodium vivax malaria with a time delay. The model is represented as a system of ordinary differential equations with delay. There are two equilibria, which are the disease-free state and the endemic equilibrium, depending on the basic reproduction number, $R_0$, which is calculated and decreases with the time delay. Moreover, the disease-free equilibrium is locally asymptotically stable if $R_0<1$. If $R_0>1$, a unique endemic steady state exists and is locally stable. Furthermore, Hopf bifurcation is applied to determine the conditions for periodic solutions.

키워드

DBSHCJ_2019_v34n2_685_f0001.png 이미지

FIGURE 1. Flows in a compartmental model for the transmission of Plasmodium vivax malaria

DBSHCJ_2019_v34n2_685_f0002.png 이미지

FIGURE 2. Computer simulations of the model equations (8)-(10) demonstrating the case R0 > 1 and τ < τ0 with a stable endemic state. The plots show time traces of the solution in (a) (Ih, Dh)-plane (b) (Ih, Iv)-plane, (c) (Dh, Iv)-plane and (d) plotting Ih(−), Dh(−−), Iv(..) versus t.

DBSHCJ_2019_v34n2_685_f0003.png 이미지

FIGURE 3. Computer simulations of the model equations (8)-(10) demonstrating a case with R0 > 1 and τ = τ0 (i.e., the bi-furcation point) with a limit cycle expected theoretically. The plots show time traces in (a) (Ih, Dh)-plane (b) (Ih, Iv)-plane,(c)(Dh, Iv)-plane and (D) plotting Ih(−), Dh(−−), Iv(..) versus t.

참고문헌

  1. R. Anderson, Infectious Disease of Humans: dynamics and control, Cambridge University Press, Cambrigde, 1991.
  2. F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol. 73 (2011), no. 3, 639-657. https://doi.org/10.1007/s11538-010-9545-0
  3. M. Chuedoung, W. Sarika, and Y. Lenbury, Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays and ${\beta}$-cell compartment, Nonlinear Anal. 2009 (2009), e1048-e1058.
  4. L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci. 150 (1998), 131-151. https://doi.org/10.1016/S0025-5564(98)10003-2
  5. M. Gilles and R. Snow, The epidemiology of malaria, in: D. Warrell, H. Gilles (Eds.), Essential malariology, 4th Edition, Arnold, London, 2002.
  6. H.-F. Huo and G.-M. Qiu, Stability of a mathematical model of malaria transmission with relapse, Abstr. Appl. Anal. 2014 (2014), Art. ID 289349, 9 pp.
  7. A. Kammanee, Mathematical model of transmission of Plasmodium vivax malaria, Master's thesis, Mahidol University, Thailand, 2002.
  8. A. Kammanee, N. Kanyamee, and I. M. Tang, The basic reproduction number for transmission of Plasmodium vivax malaria, The Southeast Asian Journal of Tropical Medicine and Public Health 32 (2001), 702-706.
  9. H. Khalil, Nonliear Systems, 3rd Edition, Prentice Hall, New Jersey, 2002.
  10. J. Kreier, Malaria: epidemiology, chemotherapy, rorphology, and metabolism, Vol. 1, Academic Press, 1980.
  11. Y. G. Kwak, H. K. Lee, M. Kim, T. H. Um, and C. R. Cho, Clinical characteristics of vivax malaria and analysis of recurred patients, Infect Chemother 45 (2012), 69-75. https://doi.org/10.3947/ic.2013.45.1.69
  12. J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.
  13. J. Li, Z. Teng, and L. Zhang, Stability and bifurcation in a vector-bias model of malaria transmission with delay, Math. Comput. Simulation 152 (2018), 15-34. https://doi.org/10.1016/j.matcom.2018.04.009
  14. Z. Ma and J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
  15. S. Mandal, R. R. Sarkar, and S. Sinha, Mathematical models of malaria - a review, Malaria Journal 10 (2011), 1-19. https://doi.org/10.1186/1475-2875-10-1
  16. J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.
  17. J. E. Marsden and M. McCracken, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambrigde, 1981.
  18. P. Pongsumpun and I. Tang, Transmission model for Plasmodium vivax malaria: conditions for bifurcation, International J. Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 1 (2007), 58-65.
  19. R. Ross, The Prevention of Malaria, John Murray, 1911.
  20. G. Virk, Runge Kutta method for delay-differential systems, IEE Proceedings D: Control Theory and Applications 132 (1985), no. 3, 119-123.
  21. H. Wan and J. Cui, A malaria model with two delays, Discrete Dyn. Nat. Soc. 2013 (2013), Art. ID 601265, 8 pp.
  22. X. Wang and X.-Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math. 77 (2017), no. 1, 181-201. https://doi.org/10.1137/15M1046277
  23. H.-M. Wei, X.-Z. Li, and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl. 342 (2008), no. 2, 895-908. https://doi.org/10.1016/j.jmaa.2007.12.058