DOI QR코드

DOI QR Code

복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures

  • Choi, Jeongho (Kyungnam University, School of Mechanical Engineering)
  • 투고 : 2019.01.11
  • 심사 : 2019.04.20
  • 발행 : 2019.04.28

초록

이 논문은 복합 입체형 트러스 단위구조체에 대한 강도 및 강성을 연구하였다. 사용된 모델은카고메 모델과 정육면체 트러스 모델을 합한 core-filled 모델이다. 해석을 위해 사용한 재질 특성은 304 스테인레스 스틸로 탄성계수는 193GPa, 항복응력 215MPa이다. 이론식은 깁슨-애쉬비의 상대탄성 관계식을 바탕으로 이론식을 유도하였고, 상용도구인 Deform 3D를 사용하여 해석을 실시하였다. 결론적으로 이 단위모델에 대한 상대탄성력은 상대밀도의 1.25배와 상수 계수값과 상관관계를 형성하고, 탄성은 기공과 반비례한다. 그리고, 상대압축강도는 상대밀도와 1.25배의 상관관계를 이룬다. 이에 대한 증명은 실제 실험을 해야 하겠으며, 유도한 이론 관계식은 굽힘과 좌굴등의 기계적 거동을 추가로 고려해야 한다. 앞으로 입체공간의 구조에 따른 탄성 및 응력에 대해 지속적인 연구가 진행될 것이다.

This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

키워드

OHHGBW_2019_v10n4_139_f0001.png 이미지

Fig. 1. Schematic unit model

OHHGBW_2019_v10n4_139_f0002.png 이미지

Fig. 2. Separated models: (1) diagonal truss model, (2) hexagonal truss model (d: diameter, w: space of truss, l: width, length, or height is equal defined as a regular hexahedron.)

OHHGBW_2019_v10n4_139_f0003.png 이미지

Fig. 3. Stress as a function of strain

OHHGBW_2019_v10n4_139_f0004.png 이미지

Fig. 4. Stress distribution for each model at yielding point (top, d=10mm; middle, d=20mm; bottom, d=30mm)

OHHGBW_2019_v10n4_139_f0005.png 이미지

Fig. 5. Relative elastic modulus as a function of relative density

OHHGBW_2019_v10n4_139_f0006.png 이미지

Fig. 6. Relative compressive yield strength as a function of relative density

Table 1. Relative elastic modulus and relative compressive yield strength

OHHGBW_2019_v10n4_139_t0001.png 이미지

참고문헌

  1. L. Wang, K. Saito, Y. Gotou & Y. Okabe. (2017). Design and fabrication of aluminum honeycomb structures based on origami technology, Journal Sandwich and Materials, 0(00), 1-19. DOI : 10.1177/1099636217714646
  2. K.P. Dharmasena,, H.N.G. Wadley, Z. Xue & J. W. Hutchinson. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35, 1063-1074. DOI : 10.1016/j.ijimpeng.2007.06.008
  3. A. J. Wang & D. L. McDowell. (2004). In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Engineering Materials and Technology, 126(2), 137-156. DOI : 10.1115/1.1646165
  4. J. Hwang. (2017). Application of seismic-sound Insulation Panel Using Kagome Truss Structure, Review of Architecture and Building Science, 61(3), 58-62. ISSN : 1225-1666
  5. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson & J. W. Hutchinson, H.N.G. Wadley. (2002), Metal Foams: a design guide, Materials & Design, 23(1), 119. DOI : 10.1016/s0261-3069(01)00049-8
  6. L. J. Gibson & M. F. Ashby. (1999). Cellular Solids-Structure and Properties, Cambridge University Press. DOI : 10.1002/crat.2170250912
  7. L. J. Gibson, M. F. Ashby. & B. A. Harley. (2010), Cellular Materials in Nature and Medicine, Cambridge University Press. ISBN 978-0-521-19544-7 hardback
  8. Hexcel Corpporation. (2016), HexWeb Honeycomb Attributes and Propertioes. Technical manual [Online]. https://www.hexcel.com/Products/Honeycomb/
  9. R. Sterling. (2013). Periodic cellular materials. Technical manual [Online]. http://www.cellularmaterials.net/
  10. D. J. Sypeck & H. N. G. Wadley. (2001), Multifunctional microtruss laminates: Textile synthesis and properties, Journal of Materials Research, 16(3), 890-897. DOI : 10.1557/JMR.2001.0117
  11. D. J. Sypeck. (2002, February). Constructed cellular metals-Processing and properties of lightweight cellular metals and structures. proceedings of a symposium held during the 2002 TMS annual meeting in Seattle, Washington, (pp. 35-45). USA : TMS
  12. H. N. G. Wadley. (2006), Multifunctional periodic cellular metals, Philosophical Transactions of the Royal Society A, 364(1838), 31-68. DOI : 10.1098/rsta.2005.1697.
  13. G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463. DOI : 10.1016/j.compstruct.2013.01.012
  14. M. R. M. Rejab & W. J. Cantwell. (2013), The mechanical behaviour of corrugated-core sandwich panels, Composites Part B: Engineering, 47, 267-277. DOI : 10.1016/j.compositesb.2012.10.031
  15. J. Choi & T. Chae. (2015), Effective stiffness and effective compressive yield strength for unit-cell model of complex truss, International Journal of Mechanics and Materials in Design, 11(1), 91-110. DOI : 10.1007/s10999-014-9267-9
  16. G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463 . DOI : 10.1016/j.compstruct.2013.01.012
  17. T. L. Nguyen & D. Han. (2017) Texture Mapping of a Bridge Deck Usiing UAV Images. Journal of Digital Contents Society, 18(6), 1041-1047. DOI : 10.9728/dcs.2017.18.6.1041
  18. S. Bae1, D.Kwag & E. Park. (2015) The Study of the Aviation Industrial Technology Convergence through Patent analysis, Journal of the Korea Convergence Society, 6(5), 219-225 DOI : 10.15207/JKCS.2015.6.5.219
  19. J. Kim, S. Ha & Y. Moon. (2017) A Study on Automatic Precision Landing for Small UAV's, Industrial Application, 7(3), 27-36 DOI : 10.22156/CS4SMB.2017.7.3.027
  20. MatWeb. (2017). 304 stainless steel. Material Property Data. [Online] http://matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da