그림 1. BOSSBase 데이터 셋의 1,000장의 커버 영상과 1LSB(bpp = 0.4), S-UNIWARD(bpp = 0.4)에 의한 스테고 영상의 이웃 픽셀 사이의 값 차이 분포 Fig. 1. Histogram of neighboring pixel value differences of 1,000 cover images in BOSSBase data sets and their stego images made by 1LSB(bpp = 0.4) and S-UNIWARD(bpp = 0.4)
그림 5. ABS와 BN 적용 전/후 히스토그램. (a) 입력, (b) ABS 적용 후, BN 적용 후 Fig. 5. Histogram before/after applying ABS and BN. (a) input, (b) after ABS, (c) after BN
그림 6. WOW와 S-UNIWARD에 사용된 16 × 16 크기의 3가지 필터 Fig. 6. Three 16 × 16 filters used in WOW and S-UNIWARD
그림 7. S-UNIWARD와 WOW에 의한 비밀 정보 삽입 영역. (a) 커버 영상, (b) S-UNIWARD, (c) WOW Fig. 7. Secret information insertion regions by S-UNIWARD and WOW. (a) Cover image, (b) S-UNIWARD, (c) WOW
그림 9. DAM 구조 Fig. 9. DAM structure
그림 10. 성능 분석에 사용된 CNN 기반의 스테그아날리시스 방법의 네트워크 구조. (a) [2]의 방법, (b) [3]의 방법, (c) [4]의 방법, (d) [5]의 방법, (e) [6]의 방법 Fig. 10. Network structures of CNN-based steganalysis methods used in performance analysis. (a) Method of [2], (b) method of [3], (c) method of [4], (d) method of [5], (e) method of [6]
그림 2. 1차원 입력을 가지는 신경망의 계층. (a) 완전 연결 계층, (b) 합성곱 계층 Fig. 2. Layers in 1D-input neural network. (a) Fully connected layer, (b) convolutional layer
그림 3. CNN 파라미터. 서로 다른 패딩 크기, 필터의 크기, 스트라이드, 필터 채널을 가지는 두 CNN, 각각 A = {0, 3, 1, 2}, B = {2, 5, 2, 1} Fig. 3. CNN parameters, Two CNNs with different padding sizes, filter sizes, stride, and filter channels, A = {0, 3, 1, 2}, B = {2, 5, 2, 1}
그림 4. Xu-Net[2]에서 제안한 CNN Fig. 4. CNN proposed in Xu-net[2]
그림 8. 4가지 활성화 함수. (a) TLU, (b) ReLU, (c) tanH, (d) sigmoid Fig. 8. 4 activation functions. (a) TLU, (b) ReLU, (c) tanH, (d) sigmoid
표 1. S-UNIWARD 알고리즘 분류 결과 Table 1. Classification results for S-UNIWARD
표 2. WOW 알고리즘 분류 결과 Table 2. Classification results for WOW
표 3. 실험에 사용된 각 CNN의 하이퍼파라미터 Table 3. Hyperparameters of CNNs used in experiments
References
- L. Pibre, J. Pasquet, D. Ienco and M. Chaumont, "Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch," Society for Imaging Science and Technology, pp.1-11, 2016.
- G. Xu and H. Wu, "Structural design of convolutional neural networks for steganalysis," IEEE Signal Processing Letters, Vol.23, No.5, pp.708-712, 2016. https://doi.org/10.1109/LSP.2016.2548421
- Y. Yuan, W. Lu, B. Feng and J. Weng, "Steganalysis with CNN using multi-channels filtered residuals," ICCCS 2017, pp.110-120, 2017.
- J. Ye, J. Ni and Y. Yi, "Deep learning hierarchical representations for image steganalysis," IEEE Transactions on Information Forensics and Security, Vol.12, No.11, pp.2545-2557, 2017. https://doi.org/10.1109/TIFS.2017.2710946
- M. Yedroudj, F. Comby and M. Chaumont, "Yedroudj-Net: an efficient CNN for spatial steganalysis," ICASSP 2018, pp.15-20, 2018.
- B. Li, W. Wei, A. Ferreira and S. Tan, "ReST-Net: diverse activation modules and parallel subnets-based CNN for spatial image steganalysis," IEEE Signal Processing Letters, Vol.25, No.5, pp.650-654, 2018. https://doi.org/10.1109/LSP.2018.2816569
- J. Yang, K. Liu, X. Kang, E. Wong and Y. Shi, "Steganalysis based on awareness of selection-channel and deep learning," IWDW 2017, pp.263-272, 2017.
- D. Neeta and K. Snehal, "Implementation of LSB steganography and it s evaluation for various bits," 1st International Conference on Digital Information Management, pp.173-178, 2006.
- D. Wu and W. Tsai, "A steganographic method for images by pixel- value differencing," Pattern Recognition Letters, Vol.24, pp.1613-1626, 2003. https://doi.org/10.1016/S0167-8655(02)00402-6
- K. Chang, C. Chang, P. S. Huang and T. Tu, "A novel image steganographic method using tri-way pixel-value differencing," Journal of Multimedia, Vol.3, No.2, pp.37-44, 2008.
- C. Balasubramanian, S. Selvakumar and S. Geetha, "High payload image steganography with reduced distortion using octonary pixel pairing scheme," Multimed Tools Appl., Vol.73, pp.2223-2245, 2014. https://doi.org/10.1007/s11042-013-1640-4
- G. Gul and F. Kurugollu, "A new methodology in steganalysis: breaking highly undetectable steganography (HUGO)," International Workshop on Information Hiding, pp.71-84, 2011.
- V. Holub and J. Fridrich, "Designing steganographic distortion using directional filters," International Workshop on Information Forensics and Security, 2012.
- V. Holub, J. Fridrich and T. Denemark, "Universal distortion function for stegangography in an arbitrary domain," EURASIP Journal of Information Security, 2014.
-
G. Cancelli, G. Doerr, I. J. Cox and M. Barni, "Detection of
$\pm$ 1 LSB steganography based on the amplitude of histogram local extrema," ICIP, pp.1288-1291, 2008. - T. Pevny, P. Bas and J. Fridrich, "Steganalysis by subtractive pixel adja cency matrix," IEEE Transactions on Information Forensics and Security, Vol.5, no.2, pp.215-224, June 2010. https://doi.org/10.1109/TIFS.2010.2045842
- J. Fridrich and J. Kodovsky, "Rich models for steganalysis of digital im ages," IEEE Transactions on Information Forensics and Security, Vol. 7, No.3, pp.868-882, June 2012. https://doi.org/10.1109/TIFS.2012.2190402
- R. Haeb-Umbach and H. Ney, "Linear discriminant analysis for improved large vocabulary continuous speech recognition," IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, CA, USA, pp.13-16, 1992.
- Tin Kam Ho, "Random decision forests," Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, Quebec, Canada, Vol.1, pp.278-282, 1995.
- Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, Vol. 86, No.11, pp.2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
- A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," NIPS, 2012.
- C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp.1-9, 2015.
- P. Bas, T. Filler and T. Pevny, "Break our steganographic system -the ins and outs of organizing BOSS," Information Hiding 13th International Conference, Vol.6958, pp.59-70, 2011.
- S. Ioffe and C. Szegedy, "Batch normalization: acceleration deep network training by reducing internal covariate shift," 2015, https://arxiv.org/abs/1502.03167.
- K. He, X. Zhang, S. Ren and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," ECCV, pp.346-361, 2014.
- C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, Vol.20, pp.273-297, 1995. https://doi.org/10.1007/BF00994018
- X. Song, F. Liu, C. Yang, X. Luo and Y. Zhang, "Steganalysis of adaptive JPEG steganography using 2D Gabor filters," in Proc. 3rd ACM Inf. Hiding Multimedia Secur. Workshop, pp.15-23, 2015.
- DDE LAB download, http://dde.binghamton.edu/download/
- Tensorflow, https://www.tensorflow.org/
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," ICLR, 2015.
- The cifar-10 dataset, https://www.cs.toronto.edu/-kriz/cifar.html
- ILSVRC, http://image-net.org
- J. Sanchez and F. Perronnin, "High-dimensional signature compression for large-scale image classification," CVPR 2011, Colorado Springs, CO, USA, pp.1665-1672, 2011.
- S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmidhuber, "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies," in A Field Guide to Dynamical Recurrent Networks, IEEE, 2001, doi: 10.1109/9780470544037.
- S. Kong and M. Takatsuka, "Hexpo: A vanishing-proof activation function," 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, pp.2562-2567, 2017.
- J. Ye, J. Ni and Y. Yi, "Deep learning hierachical representations for image steganalysis," IEEE Transactions on Information Forensics and Security, Vol.12, No.11, pp.2545-2557, 2017. https://doi.org/10.1109/TIFS.2017.2710946
- J. Kim and H. Park, "Image steganography using layered pixel-value differencing," Jounal of Broadcasting Engineering, Vol.22, No.3, 2017.
- J. Kim and H. Park, "A statistical approach for improving the embedding capacity of block matching based image steganography," Journal of Broadcast Engineering, Vol.22, No.5, 2017.
- J. Kim, H. Park, J. Park, "Experimental verification of the versatility of SPAM-based image steganalysis," Journal of Broadcast Engineering, Vol.23, No.4, pp.525-535, 2018.