그림 1. 복원 비디오 부호화의 블록도 Fig 1. A block diagram of a reconstructive video coding
그림 2. 초해상화 기반 복원 비디오 부호화 프레임워크의 성능 그래프 Fig 2. The performance graph of super-resolution based reconstructed video coding framework
그림 3. 심층신경망 기반 업스케일링 네트워크 구조 Fig 3. Structure of up-sampling network based on a convolutional neural network
그림 4. 복원 비디오 부호화 성능 테스트에 사용된 실험 영상 Fig 4. Test sequences for performance test of reconstructed video coding framework
그림 5. 각 실험 영상에 대한 복원 비디오 부호화 성능 그래프 Fig 5. The performance graph of reconstructed video coding framework for each test sequence
표 1. 초해상화 기반 복원 비디오 부호화의 부호화 성능 Table 1. Coding performance of the conventional HEVC and the reconstructed video coding framework
References
- G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard", IEEE Trans. Circuits Syst. Video Technol., vol. 22, pp. 1648-1667, Dec. 2012.
- B. Bross, Working Draft 1 of Versatile Video Coding, document JVET-J1001, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Apr. 2018.
- W.-S. Park, M. Kim, "CNN-based In-loop Filtering for Coding Efficiency Improvement," Proceeding of IEEE Image Video and Multidimensional Signal Processing (IVMSP) workshop, Bordeaux, France, pp. 1-5, 2016.
- N. Yan, D. Liu, H. Li, F. Wu, "A convolutional neural network approach for half-pel interpolation in video coding," Proceeding of International Symposium on Circuits and Systems, Baltimore, Maryland, pp. 1-4, 2017.
- D. Liu, H. Ma, Z. Xiong, F. Wu, "CNN-based DCT-like transform for image compression," Proceeding of International Conference on Multimedia Modeling, Bangkok, Thailand, pp. 61-72, 2018.
- Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, D. Wang, "CU partition mode decision for HEVC hardwired intra encoder using convolution neural network," IEEE Trans. Image Processing, vol. 25, no. 11, pp. 5088-5103, Nov. 2016. https://doi.org/10.1109/TIP.2016.2601264
- E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, L. V. Gool, "Soft-to-hard vector quantization for end-to-end learning compressible representations," Proceeding of Advances in Neural Information Processing Systems, Long beach, California, pp. 1141-1151, 2017.
- J. Balle, V. Laparra, E. P. Simoncelli, "End-to-end optimized image compression," Proceeding of International Conference on Learning Representations, Toulon, France, 2017.
- C.-Y. Wu, N. Singhal, P. Krähenbühl, "Video compression through image interpolation," Proceeding of European Conference on Computer Vision, Munich, Germany, 2018.
- D. Barreto, L. D. Alvarez, R. Molina, A. K. Katsaggelos, and G. M. Callico, "Region-based super-resolution for compression," Multidimensional Systems and Signal Processing, vol. 18, no. 2-3, pp. 59-81, Sept. 2007. https://doi.org/10.1007/s11045-007-0019-y
- V.-A. Nguyen, Y.-P. Tan, and W. Lin, "Adaptive Downsampling/ Upsampling for Better Video Compression at Low Bit Rate," Proceeding of IEEE ISCS, Seattle, WA, USA, pp. 1624-1627, 2008.
- M. Shen, P. Xue, and C. Wang "Down-sampling Based Video Coding Using Super-Resolution Technique," IEEE Trans. CSVT, vol. 21, no. 6, pp. 755-765, June 2011.
- Y. Dar, and A. M. Bruckstein, (Apr. 2014). "Improving low bit-rate video coding using spatio-temporal down-scaling," [Online]. Available: http://arxiv.org/abs/1404.4026
- H. Chen, X. He, M. Ma, L. Qing, and Q. Teng, "Low bit rates image compression via adative block downsampling and super resolution," Journal of Electronic Imaging, vol. 25, no. 1, pp. 013004:1-10, Jan. 2016.