Fig. 1. Morphological characteristics of collected Botrytis cinerea strains.
Fig. 2. Multiple alignment result of collected Botrytis cinerea strains.
Fig. 3. Boxplot by accession A) and Strain B), Interaction effect plot of Strain C) and Accession D).
Table 1. Information of collected Botrytis Cinerea strains
Table 2. Difference of severity by Botrytis cinerea strains
Table 3. Result of Aligned Rank Transform(ART) ANOVA table factored by rose accession and Botrytis cinerea strains
References
- Amselem, J., Cuomo, C. A., van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A. et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7: e1002230. https://doi.org/10.1371/journal.pgen.1002230
- Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., Arnyasi, M., Esmaeili, M. et al. 2013. Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Microbiol. Res. 168: 379-388. https://doi.org/10.1016/j.micres.2012.12.008
- Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J. M., Simon, A. et al. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277: 1-10. https://doi.org/10.1111/j.1574-6968.2007.00930.x
- Elad, Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Prot. 7: 361-366. https://doi.org/10.1016/0261-2194(88)90003-8
- Fu, Y., van Silfhout, A., Shahin, A., Egberts, R., Beers, M., van der Velde, A. et al. 2017. Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol. Breed. 37: 13. https://doi.org/10.1007/s11032-016-0617-1
- Kerssies, A., Bosker-van Zessen, A. I., Wagemakers, C. A. M. and van Kan, J. A. L. 1997. Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Dis. 81: 781-786. https://doi.org/10.1094/PDIS.1997.81.7.781
- Kumari, S., Tayal, P., Sharma, E. and Kapoor, R. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiol. Res. 169: 862-872. https://doi.org/10.1016/j.micres.2014.02.012
- Kwon, S., Choi, G., Kim, K. and Kwon, H. 2014. Control of Botrytis cinerea and postharvest quality of cut roses by electron beam irradiation. Korean J. Hortic. Sci. Technol. 32: 507-516. https://doi.org/10.7235/hort.2014.14021
- Mirzaei, S., Mohammadi Goltapeh, E., Shams-Bakhsh, M., Safaie, N. and Chaichi, M. 2009. Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran. J. Phytopathol. 157: 474-482. https://doi.org/10.1111/j.1439-0434.2008.01518.x
- Movahedi, S. and Heale, J. B. 1990. The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex. Pers. Physiol. Mol. Plant Pathol. 36: 303-324. https://doi.org/10.1016/0885-5765(90)90061-2
- Nakajima, M. and Akutsu, K. 2014. Virulence factors of Botrytis cinerea. J. Gen. Plant Pathol. 80: 15-23. https://doi.org/10.1007/s10327-013-0492-0
- Rigotti, S., Viret, O. and Gindro, K. 2006. Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr. Phytopathol. Mediterr. 45: 253-260.
- Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6: 211-221.
- Segmuller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21: 808-819. https://doi.org/10.1094/MPMI-21-6-0808
- Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M. et al. 2005. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol. Plant-Microbe Interact. 18: 602-612. https://doi.org/10.1094/MPMI-18-0602
- Van Der Vlugt-Bergmans, C. J. B., Brandwagt, B. F., Vant't Klooster, J. W., Wagemakers, C. A. M. and van Kan, J. A. L. 1993. Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycol. Res. 97: 1193-1200. https://doi.org/10.1016/S0953-7562(09)81284-7
- Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
- Wobbrock, J. O., Findlater, L., Gergle, D. and Higgins, J. J. 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 143-146. Vancouver, BC, Canada.
- Zimand, G., Elad, Y. and Chet, I. 1996. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86: 1255-1260. https://doi.org/10.1094/Phyto-86-1255