DOI QR코드

DOI QR Code

Difference of Gray Mold Severity at Roses Caused by Botrytis cinerea Strains

잿빛곰팡이병원균 Botrytis cinerea 균주 종류별 장미 발병 정도의 차이

  • Hwang, Kyu-Hyon (Division of Horticulture Research, Gyeonggido Agricultural Research & Extension Services) ;
  • Hong, Seung-Min (Division of Horticulture Research, Gyeonggido Agricultural Research & Extension Services) ;
  • Lee, Young-Soon (Mushroom Research Institute, Gyeonggido Agricultural Research & Extension Services) ;
  • Lee, Hyun-Ju (Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services) ;
  • Seo, Myeong-Whoon (Division of Horticulture Research, Gyeonggido Agricultural Research & Extension Services)
  • 황규현 (경기도농업기술원 원예연구과) ;
  • 홍승민 (경기도농업기술원 원예연구과) ;
  • 이영순 (경기도농업기술원 버섯연구소) ;
  • 이현주 (경기도농업기술원 환경농업연구과) ;
  • 서명훈 (경기도농업기술원 원예연구과)
  • Received : 2019.01.12
  • Accepted : 2019.03.26
  • Published : 2019.03.31

Abstract

Botrytis cinerea is the pathogen for a gray mold generating problems during the cultivation and transportation of roses. But there is little information about the difference of the symptom severity caused by gray mold on rose varieties and pathogen strains. 16 strains were collected from the rose cultivation area to confirm the degree of disease occurrence against strains and each variety. Collected 16 strains were identified based on the sequences analysis of ITS region of ribosomal DNA by using specific primers. The sequence analysis was performed by comparing the sequences to find a difference. To confirm the difference in disease occurrence for each strains, the difference was classified from 0 to 5 stages using charmant variety as a control. The data was confirmed through Kruskal-Wallis ANOVA. The result showed the significant difference in the pathogenicity caused by strains. WNG6_5 showed the lowest pathogenicity with 0.24 and WNG6_3 showed the highest with 3.20. The difference between two strains were almost 3.0. In addition, nine varieties of roses were more investigated with three strains such as the strains of WNG6_5, Hwa_1, and WNG6_3. The result showed that the Love Letter variety showed resistance and the Ice Bear variety was sensitive to three strains. Taken together, this study showed the significant difference by the interactions of rose varieties and gray mold strains.

잿빛곰팡이병은 Botrytis cinerea가 원인균으로 알려져 있으며 장미 재배와 유통 시에 문제가 되고 있다. 그러나 병원균 균주와 장미 품종에 따른 발병정도의 차이를 연구한 결과가 없어 이를 구명하고자 하였다. 장미 재배 지역에서 분리한 균주를 수집하고 병원 균주별 장미 품종별 발병정도를 확인한 결과는 다음과 같다. 서울시립대에서 11종, 국립원예특작과학원에서 3종, 경기도농업기술원 장미재배온실에서 2종을 분리하였으며, 분리한 균주를 ribosomal DNA의 ITS region에 특이적인 primer를 사용하여 동정하였고, sequencing을 통해 염기서열을 비교한 결과 큰 차이가 없음을 확인하였다. 잿빛곰팡이 균주별 발병정도의 차이를 확인하기 위해 장미 품종인 샤만트 품종에 대하여 Botrytis cinerea 균주별 발병정도의 차이를 0-5의 단계로 나누어 조사하고, Kruskal-Wallis ANOVA를 통해 분석한 결과, 균주에 따라 병원성이 유의적으로 차이를 나타냈다. WNG6_5의 경우 0.24 로 병원성이 가장 낮았으며, WNG6_3의 경우 3.20로 병원성이 가장 높아, 균주별 병원성의 차이는 거의 3.0 정도의 차이를 보였다. 장미 9품종에 대한 발병정도의 차이를 확인하기 위해 균주 WNG6_5, Hwa_1, WNG6_3을 선발하여 분석한 결과 러브레터 품종이 3가지 균주에 대해 저항성을 보였으며, 아이스베어 품종이 감수성을 나타내었다. 본 연구를 통해 장미 품종 및 병원균의 종류에 따라 발병정도의 유의적인 차이와 교호작용의 효과가 존재함을 확인할 수 있었다.

Keywords

SMBRCU_2019_v25n1_16_f0001.png 이미지

Fig. 1. Morphological characteristics of collected Botrytis cinerea strains.

SMBRCU_2019_v25n1_16_f0002.png 이미지

Fig. 2. Multiple alignment result of collected Botrytis cinerea strains.

SMBRCU_2019_v25n1_16_f0003.png 이미지

Fig. 3. Boxplot by accession A) and Strain B), Interaction effect plot of Strain C) and Accession D).

Table 1. Information of collected Botrytis Cinerea strains

SMBRCU_2019_v25n1_16_t0001.png 이미지

Table 2. Difference of severity by Botrytis cinerea strains

SMBRCU_2019_v25n1_16_t0002.png 이미지

Table 3. Result of Aligned Rank Transform(ART) ANOVA table factored by rose accession and Botrytis cinerea strains

SMBRCU_2019_v25n1_16_t0003.png 이미지

References

  1. Amselem, J., Cuomo, C. A., van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A. et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7: e1002230. https://doi.org/10.1371/journal.pgen.1002230
  2. Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., Arnyasi, M., Esmaeili, M. et al. 2013. Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Microbiol. Res. 168: 379-388. https://doi.org/10.1016/j.micres.2012.12.008
  3. Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J. M., Simon, A. et al. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277: 1-10. https://doi.org/10.1111/j.1574-6968.2007.00930.x
  4. Elad, Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Prot. 7: 361-366. https://doi.org/10.1016/0261-2194(88)90003-8
  5. Fu, Y., van Silfhout, A., Shahin, A., Egberts, R., Beers, M., van der Velde, A. et al. 2017. Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol. Breed. 37: 13. https://doi.org/10.1007/s11032-016-0617-1
  6. Kerssies, A., Bosker-van Zessen, A. I., Wagemakers, C. A. M. and van Kan, J. A. L. 1997. Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Dis. 81: 781-786. https://doi.org/10.1094/PDIS.1997.81.7.781
  7. Kumari, S., Tayal, P., Sharma, E. and Kapoor, R. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiol. Res. 169: 862-872. https://doi.org/10.1016/j.micres.2014.02.012
  8. Kwon, S., Choi, G., Kim, K. and Kwon, H. 2014. Control of Botrytis cinerea and postharvest quality of cut roses by electron beam irradiation. Korean J. Hortic. Sci. Technol. 32: 507-516. https://doi.org/10.7235/hort.2014.14021
  9. Mirzaei, S., Mohammadi Goltapeh, E., Shams-Bakhsh, M., Safaie, N. and Chaichi, M. 2009. Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran. J. Phytopathol. 157: 474-482. https://doi.org/10.1111/j.1439-0434.2008.01518.x
  10. Movahedi, S. and Heale, J. B. 1990. The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex. Pers. Physiol. Mol. Plant Pathol. 36: 303-324. https://doi.org/10.1016/0885-5765(90)90061-2
  11. Nakajima, M. and Akutsu, K. 2014. Virulence factors of Botrytis cinerea. J. Gen. Plant Pathol. 80: 15-23. https://doi.org/10.1007/s10327-013-0492-0
  12. Rigotti, S., Viret, O. and Gindro, K. 2006. Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr. Phytopathol. Mediterr. 45: 253-260.
  13. Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6: 211-221.
  14. Segmuller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant-Microbe Interact. 21: 808-819. https://doi.org/10.1094/MPMI-21-6-0808
  15. Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M. et al. 2005. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol. Plant-Microbe Interact. 18: 602-612. https://doi.org/10.1094/MPMI-18-0602
  16. Van Der Vlugt-Bergmans, C. J. B., Brandwagt, B. F., Vant't Klooster, J. W., Wagemakers, C. A. M. and van Kan, J. A. L. 1993. Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycol. Res. 97: 1193-1200. https://doi.org/10.1016/S0953-7562(09)81284-7
  17. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  18. Wobbrock, J. O., Findlater, L., Gergle, D. and Higgins, J. J. 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 143-146. Vancouver, BC, Canada.
  19. Zimand, G., Elad, Y. and Chet, I. 1996. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86: 1255-1260. https://doi.org/10.1094/Phyto-86-1255