DOI QR코드

DOI QR Code

A study on the long distance data transmission of underwater acoustic sensor

수중 음향센서의 원거리 데이터 전송에 관한 연구

  • Received : 2018.11.06
  • Accepted : 2019.03.26
  • Published : 2019.03.31

Abstract

This paper is a study result on long distance transmission of underwater acoustic sensor data over cable. The data transceiver is designed using the LVDS (Low Voltage Differential Signaling) transmission scheme, and the jitter characteristics are analyzed by measuring the long distance transmission signal through the cable. In order to reduce the jitter, a pre-emphasis technique is applied to compensate the transmitting signal to be attenuated by long distance transmission, and the transmission characteristics were verified according to the distance.

본 논문은 수중 음향센서 데이터의 원거리 케이블 전송에 관한 연구 결과이다. LVDS(Low Voltage Differential Signaling) 전송 방식으로 설계된 데이터 송수신기의 케이블에 대한 원거리 전송 신호를 측정하고 지터 특성을 분석하였다. 지터 특성을 저감하기 위하여, 원거리 전송에 따라 감쇠될 송신 신호를 역 보상하는 고역 강조(pre-emphasis) 기법을 적용하였으며, 전송 거리에 따라 송신 특성을 검증하였다.

Keywords

GOHHBH_2019_v38n2_240_f0001.png 이미지

Fig. 1. Definition of the jitter.

GOHHBH_2019_v38n2_240_f0002.png 이미지

Fig. 2. Diagram of the total jitter.

GOHHBH_2019_v38n2_240_f0003.png 이미지

Fig. 3. Diagram of the sensor data transceiver.

GOHHBH_2019_v38n2_240_f0004.png 이미지

Fig. 4. Test setup for jitter analysis (transmission distance: 0 m, 50 m, 100 m).

GOHHBH_2019_v38n2_240_f0005.png 이미지

Fig. 5. Eye-pattern for received LVDS (single driver) signal through the 100 m cable (measured by a differential probe).

GOHHBH_2019_v38n2_240_f0006.png 이미지

Fig. 6. Jitter measurement result for received LVDS (single driver) signal through the 50 m cable.

GOHHBH_2019_v38n2_240_f0007.png 이미지

Fig. 7. Jitter measurement result for received LVDS (single driver) signal through the 100 m cable.

GOHHBH_2019_v38n2_240_f0008.png 이미지

Fig. 8. LVDS data transmission techniques.

GOHHBH_2019_v38n2_240_f0009.png 이미지

Fig. 9. Diagram of the long distance cable transmission for underwater acoustic sensor data.

GOHHBH_2019_v38n2_240_f0010.png 이미지

Fig. 10. Eye-pattern for received LVDS (parallel driver) signal through 50 m cable (measured by single-ended probes).

GOHHBH_2019_v38n2_240_f0011.png 이미지

Fig. 11. Eye-pattern for received LVDS (parallel driver) signal through 100 m cable (measured by single-ended probes).

GOHHBH_2019_v38n2_240_f0012.png 이미지

Fig. 12. Eye-pattern for received LVDS (pre-emphasis) signal through 100 m cable (measured by a differential probe).

Table 1. Jitter measurement results.

GOHHBH_2019_v38n2_240_t0001.png 이미지

References

  1. J. Hancock, "Jitter-Understanding it, measuring it, eliminating it; Part 3: Causes of jitter," in HFE PDF Archives (HFE, Available from: https://www.highfrequencyelectronics.com/,2004)
  2. R. Stephens, "Jitter analysis: The dual-Dirac model, RJ/DJ, and Q-scale," Agilent Technologies Inc., White Paper, 2004.
  3. P. Heydari, "Analysis of the PLL jitter due to power/ground and substrate noise," IEEE Trans. Cir. Sys. I Reg. Pap. 51, 2404-2416 (2004).
  4. J. Buckwalter and A. Hajimiri, "A 10 Gb/s Data-Dependent Jitter Equalizer," Proc. IEEE CICC, 39-42 (2004).
  5. J. Goldie, "LVDS goes the distance," SID Int. Symp. Dige. Tech. Pap.,126-129 (1999).
  6. INCITS, "Fibre Channel Methodologies for Jitter and Signal Quality Specification," MJSQ, Tech. Rep. Rev. 10.0, 2003.
  7. J. H. Han, B. H. LEE, J. S. Seol, and J. M. Lee, "Experimental analysis and design of digital telemetry system with LVDS for sonar", J.Acoust. Soc. Kr. Suppl. 2(s), 32, 89-90 (2013).