DOI QR코드

DOI QR Code

Assessment of an Optimum Biochar Application Rate for Tomato(Solanum lycopersicum L.) Cultivation

토마토 재배를 위한 바이오차 최적시용 비율 평가

  • Park, Do-Gyun (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences) ;
  • Hong, Seung-Gil (Division for KOPIA, Technology Cooperation Bureau, Rural Development Administration) ;
  • Jang, Eunsuk (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences) ;
  • Shin, Joung-Du (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences)
  • 박도균 (국립농업과학원 기후변화생태과) ;
  • 홍승길 (농촌진흥청 기술협력국 국외농업기술과) ;
  • 장은숙 (국립농업과학원 기후변화생태과) ;
  • 신중두 (국립농업과학원 기후변화생태과)
  • Received : 2019.03.05
  • Accepted : 2019.03.20
  • Published : 2019.03.30

Abstract

Objective of this study was to evaluate an optimum biochar application rate and estimate the carbon sequestration based on the soil chemical properties and growth responses for biochar application during tomatoes cultivation. The treatments consisted of control as recommended application rates of fertilizers, 0.01%, 0.03%, 0.05%, and 0.07% of biochar application(w/w, biochar:soil). For effects of soil chemical properties, the $NO_3-N$contents in the soil were peaked at 9 days after transplanting. But there was not significant difference(p>0.05) among the treatments during cultivation periods. However, $NH_4-N$ contents in the biochar treatment were lower than the control until 14 days of transplanting. $P_2O_5$ contents in the biochar treatments were lower than that of the control until 19 days after transplanting except 0.01% of biochar application plot. $K_2O$ contents in soils treated with 0.01% and 0.03% of biochar were higher until 6 days after transplanting than that in the control. For N use efficiency of biochar application, it was observed that the 0.05% biochar application plot was highest among the treatments. The highest carbon sequestration was estimated at $2.83mg\;kg^{-1}$ for 0.03% of biochar application. However, it is considered that the optimum biochar application rate was 0.05% for tomato cultivation, considering the growth characteristics and yield components.

본 연구의 목적은 원예작물을 대상으로 밭에서 바이오차 시용에 따른 토마토 재배 시 바이오차의 적정 시용비율을 구명하고, 탄소 격리량을 산정하는 것이다. 바이오차는 0.01%, 0.03%, 0.05% 및 0.07%(w/w, 토양/바이오차)로 구분하여 처리하였으며, 비료는 N-P-K, 20.4-10.3-12.2kg $10a^{-1}$를 기비와 추비로 나누어 시용하였고, 돈분퇴비는 $440kg\;10a^{-1}$를 기준으로 전량 기비로 투입하였다. 토양 이화학성의 결과를 보면 토양중의 $NO_3-N$함량은 바이오차 처리 9일 후 가장 높게 나타났지만 처리간 유의성은 없었지만(p>0.05) NH4-N 함량은 바이오차 처리 후 14일 후 바이오차 처리구에서 낮게 나타났다. 토양중의 $P_2O_5$ 함량은 바이오차 처리 후 19일 후 0.01%를 제외한 바이오차 처리구에서 낮게 나타났다. 토양 중 $K_2O$ 함량은 바이오차 처리 후 6일 때 대조구와 비교하였을 때 0.01%와 0.03%가 높게 났다. 하지만 다른 처리구와 비교 하였을 때 유의차가 인정되지 않았다. 질소 효율성을 보면 0.05%에서 가장 높았으며, 또한 토마토 생육도 바이오차 처리량에 관계없이 좋았다. 바이오차 0.05% 시용구에서 질소 효율성 및 토마토 생육과 수량이 가장 높게 나타났다. 바이오차 투입량 변화에 따른 탄소 격리량 산정에서는 0.03% 처리에서 $2.83mg\;kg^{-1}$으로 가장 높게 나타났지만, 토마토 수량 측면에서 바이오차 적정 시용비율은 0.05%라고 판단된다.

Keywords

DOGSBE_2019_v27n1_39_f0001.png 이미지

Fig. 1. Changes in temperature and irrigation amounts during tomato cultivation in the greenhouse over time.

DOGSBE_2019_v27n1_39_f0002.png 이미지

Fig. 2. Changes of NO3-N contents in the soil incorporated with different ratios of biochar during tomato cultivation.

DOGSBE_2019_v27n1_39_f0003.png 이미지

Fig. 3. Changes of NH4-N contents in the soil incorporated with different ratios of biochar during tomato cultivation.

DOGSBE_2019_v27n1_39_f0004.png 이미지

Fig. 4. Changes of P2O5 contents in the soil incorporated with different ratios of biochar during tomato cultivation.

DOGSBE_2019_v27n1_39_f0005.png 이미지

Fig. 5. Changes of K2O contents in the soil incorporated with different ratios of biochar during tomato cultivation.

DOGSBE_2019_v27n1_39_f0006.png 이미지

Fig. 6. Comparisons of tomato yield with different ratios of biochar application.

Table 1. Physiochemical Properties of Soil Used in this Study

DOGSBE_2019_v27n1_39_t0001.png 이미지

Table 2. Estimation of the Nitrogen Use Efficiency with Different Ratios of Biochar Application

DOGSBE_2019_v27n1_39_t0002.png 이미지

Table 3. Estimation of the Efficiency Rates for Carbon Use with Different Ratios of Biochar Application

DOGSBE_2019_v27n1_39_t0003.png 이미지

References

  1. Signor, D. and Cerri., C. E. P., "Nitrous Oxide Emissions in Agricultural Soils: A Review", Pesq. Agropec. Trop. 43(3), pp. 322-338. (2013). https://doi.org/10.1590/S1983-40632013000300014
  2. Denman, K. L., et al., Couplings between Changes in the Climate System and Biogeochemistry. Climate Change 2007: The Physical Science Basis. In: Solomon, S., et al., Eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 500-587. (2007).
  3. Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H., "Emissions of $N_2O$ and NO from fertilized fields: Summary of available measurement data", Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001811, (2002).
  4. FAOSTAT, Food and Agriculture Organization the United Nation. http://faostat3. fao.org/download/Q/QC/E. (2015).
  5. Beecher, G. R., Nutrient Content of Tomatoes and Tomato Products. Proceedings of the Society for Experimental Biology and Medicine, 218, pp. 98-100. http://dx.doi.org/10.3181/00379727-218-44282a. (1998).
  6. FAO, FAO Statistical Databases of Agriculture, United Nations, Rome. (2012).
  7. Kaudal, B. B., Chen, D., Madhavan, D. B., Downie, A., and Weatherley, A., "An examination of physical and chemical properties of urban biochar for use as growing media substrate", Biomass Bioenerg., 84, pp. 49-58. (2016). https://doi.org/10.1016/j.biombioe.2015.11.012
  8. Han, J. H., Seo, D. C., Kang, S. W., Choi, I. K., Jeon, W. T., Kang, U. G., Kang, S. J., Heo, J. S., Kim, S. D., and Cho, J. S., "Evaluation of fertilizer value of biochars using water plants", Korean J. Soil Sci. Fert., 44(5), pp. 794-800. (2011). https://doi.org/10.7745/KJSSF.2011.44.5.794
  9. Lehmann A., et al., "Blm10 binds to pre-activated proteasome core particles with open gate conformation", EMBO Rep., 9(12), pp. 1237-1243. (2008). https://doi.org/10.1038/embor.2008.190
  10. Biederman, L. A., Harpole, W. S., "Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis", Global Change Biol. Bioenergy, 5, pp. 202-214. (2013). https://doi.org/10.1111/gcbb.12037
  11. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S., "Sustainable biochar to mitigate global climate change", Nat. Commun, 1(56), pp. 1-9. (2010).
  12. Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C., "A quantitative review of the effects of biochar application to soils on crop productivity using met-analysis", Agric. Ecosyst. Environ., 144, pp. 175-187. (2011). https://doi.org/10.1016/j.agee.2011.08.015
  13. Amonette, J. E., Hu, Y., Schlekewey, N., Dai, S. S., Shaff, Z. W., Russell, C. K., et al., "Biochars are not created equal: a survey of their physical, structural, and chemical properties and implications for soil application", Presentation given at the North American Biochar Conference 2009, Boulder, CO Retrieved August 30, 2010, from http://cees.colorado.edu/docs/AmonetteProductionPresentationNABC2009.pdf. (2009).
  14. Crane-Droesch, A., Abiven, S., Jeffery, S., and Torn, M. S., "Heterogeneous global crop yield response to biochar: a meta-regression analysis", Environ. Res. Lett., 8(4), pp. 044049-044057. doi:http://dx.doi.org/10.1088/1748-9326/8/4/044049. (2013).
  15. Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C., "A quantitative review of the effects of biochar application to soils on crop productivity using met-analysis", Agric. Ecosyst. Environ., 144, pp. 175-187. (2011). https://doi.org/10.1016/j.agee.2011.08.015
  16. Borchard, N., Siemens, J., Ladd, B., Moller, A., and Amelung, W., "Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice", Soil Till. Res., 144, pp. 184-194. (2014). https://doi.org/10.1016/j.still.2014.07.016
  17. Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., and Murphy, D. V., "Biochar mediated changes in soil quality and plant growth in a three year field trial", Soil. Biol. Biochem., 45, pp. 113-124. (2012). https://doi.org/10.1016/j.soilbio.2011.10.012
  18. Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H., and Jones, D. L., "Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate", Agric. Ecosyst. Environ., 158, pp. 192-199. (2012). https://doi.org/10.1016/j.agee.2012.06.011
  19. Rousk, J., Dempster, D. N., Jones, D. L., "Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies", Eur. J. Soil Sci., 64, pp. 770-776. (2013). https://doi.org/10.1111/ejss.12103
  20. Tammeorg, P., Simojoki, A., Makela, P., Stoddard, F. L., Alakukku, L., and Helenius, J., "Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean", Plant Soil, 374, pp. 89-107. (2014). https://doi.org/10.1007/s11104-013-1851-5
  21. Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C., "A quantitative review of the effects of biochar application to soils on crop productivity using met-analysis", Agric. Ecosyst. Environ., 144, pp. 175-187. (2011). https://doi.org/10.1016/j.agee.2011.08.015
  22. Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., and Paz-Ferreiro, J., "Biochar's effect on crop productivity and the dependence on experimental conditions a meta-analysis of literature data", Plant Soil, 373, pp. 583-594. (2013). https://doi.org/10.1007/s11104-013-1806-x
  23. Jay, C. N., Fitzgerald, J. D., Hipps, N. A., and Atkinson, C. J., "Why short-term biochar application has no yield benefits: evidence from three field-grown crops", Soil Use Manage. doi:http://dx.doi.org/10.1111/sum.12181. (2015).
  24. Woo, S. H., "Biochar for soil carbon sequestration", Clean Technology, 19(3), pp. 201-211. (2013). https://doi.org/10.7464/ksct.2013.19.3.201
  25. Ding, Y., Liu, Y., Wu, W., Shi, D., Yang, M., and Zhong, Z., "Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns", Water Air Soil Pollut., 213(1), pp. 448-453. (2010).
  26. Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., and Glaser, B., "Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments", Plant Soil., 249(2), pp. 343-357. (2003). https://doi.org/10.1023/A:1022833116184
  27. Shin, J. D., Choi, Y. S., Choi, E. J., Kim, M. S., and Heo, J. W., "Evaluation of efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soul Carbon Sequestration", J. of the Korea Organic Resources Recycling Association, 25(3), pp. 73-78. (2017).
  28. Jung, W. K., "Rice yield response to biochar application under different water managements practices", Korean J. Soil Sci. Fert., 45(1), pp. 16-19. (2012). https://doi.org/10.7745/KJSSF.2012.45.1.016
  29. Kim, D., K. Cho, T. Won, I.T. Bak, and G. Yoo., "Changes in crop yield and CH4 emission from rice paddy soils applied with biochar and slow-release fertilizer", Korean J. Environ. Biol., 32(4), pp. 327-334. (2014). https://doi.org/10.11626/KJEB.2014.32.4.327
  30. NIAST (National Institute of Agricultural Science and Technology), Methods of soil chemical analysis. Suwon, Korea. (2010).
  31. RDA (Rural Development Administration), Standard of analysis and survey for agricultural experiment. Suwon, Korea. (2012).
  32. Abbasi, M. K., Hina, M., and Tahir, M. M., "Effect of Azadirachta indica(neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions", Chemosphere, 82, pp. 1629-1635. (2011). https://doi.org/10.1016/j.chemosphere.2010.11.044
  33. Rondon, M., Ramirez, J. A., and Lehmann, J., Greenhouse gas emissions decreas with charcoal additions to tropical soils, http://soil carbon center.kstate.edu/confernce/USDA/Abstracts/html/Abstract/Rondon.htm. (2005).
  34. Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R. J., and Solaiman, Z. M., "Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum", Pedosphere., 25, pp. 686-695. (2015). https://doi.org/10.1016/S1002-0160(15)30049-7
  35. Solaiman, Z. M., Blackwell, P., Abbott, L. K., and Storer, P., "Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat", Aust. J. Soil Res., 48, pp. 546-554. (2010). https://doi.org/10.1071/SR10002
  36. Laird, D. A., Novak, J. M., Collins, H. P., Ippolito, J. A., Karlen, D. L., Lentz, R. D., Sistani, K. R., Spokas, K., and Van Pelt, R. S., "Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar", Geoderma, 289, pp. 46-53. (2017). https://doi.org/10.1016/j.geoderma.2016.11.025
  37. Sorensen, R. B. and M. C. Lamb, "Crop yield response to increasing biochar rates", J. Crop Improvement, 30(6), pp. 703-712. (2016). https://doi.org/10.1080/15427528.2016.1231728