• Title/Summary/Keyword: 혼소

Search Result 117, Processing Time 0.028 seconds

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

Economic Feasibility Assessment and Analysis of Dual Fuel Systems Utilizing Diesel and Compressed Natural Gas (경유와 압축천연가스의 혼소 시스템에 대한 경제적 타당성 평가 분석)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.166-174
    • /
    • 2018
  • Since particulate matter has high impacts on human health and everyday life, the dual fuel systems utilizing diesel and compressed natural gas have been developed to improve the environmental performance of diesel vehicles. The objective of this study is to estimate the economic feasibility of the dual fuel system based on real operating data of dual fuel buses and diesel buses. The system is economically feasible if the annual mileage of the dual bus is higher than 30,000 km, or if the unit fuel price of diesel is higher than that of CNG by 408 won. The uncertainty analysis results show that the economic feasibility of the system is probabilistically high, regardless of the variability of input data such as mileage and unit prices for the fuels. The sensitivity analysis results show that diesel and CNG prices are the highest contributor to the net present value of the system. Based on these results, economic incentives are suggested to disseminate the systems. This study would provide valuable economic information for bus business industry and policy maker to help make decisions for applying and disseminating the dual fuel systems to mitigate particulate matter problems.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

A Study on the Characteristics of Dual Fuel Engine Fueled by Natural Gas and Diesel (천연가스-경유 혼소엔진의 특성연구)

  • Kim, Changup;Oh, Seungmook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.20-26
    • /
    • 2013
  • In this study, based on a 12L class diesel engine, a natural gas-diesel dual fuel engine was developed by adding natural gas fuel supply system. For optimal control of dual fuel engine, a conventional diesel engine ECU and a dual fuel ECU were utilized. To convert the dual fuel engine, MPI natural gas injectors were installed on the new modified intake manifold adapter. As a results, the dual fuel engine showed same level of torque, power performance and exhaust gas emissions as those of a diesel base engine.. Furthermore, overall fuel replacement rate was 70~76 % and total fuel cost saving was 37~40%.

A Study on mechanical safety of emergency generator by bi-fuel system (비상발전기 혼소시스템 구축에 따른 기계적 안전성에 관한 연구)

  • Lim, Hyun-Sung;Han, Woon-Ki;Jung, Jin-Soo;Park, Chan-Urm;Song, Young-Sang;Cho, Sung-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1555-1556
    • /
    • 2015
  • 최근 증가하는 전력 수요로 인하여 전국에 분포되어 있는 비상발전기를 활용하는 방안이 대두되고 있다. 전국에 설치되어 있는 비상발전기의 대부분은 디젤 연료를 기반으로 운전되고 있으며 가동 시 매연 및 경제성이 낮은 단점을 가지고 있다. 이에 최근 디젤 연료에 가스 연료를 혼합하여 발전하는 혼소시스템이 보급되고 있다. 본 논문에서는 비상발전기의 혼소시스템 구축 시 기계적 안전성을 검증하고자 한다.

  • PDF

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF