Fig. 1. ARIMA process by Box-Jenkins
Fig. 2. Quarterly sales revenue of food and beverage (left bar : food, right bar : beverage)
Fig. 3. Time series data of food ales from June 2015 to Dec. 2020
Fig. 4. Differencing data of food sales from June 2015 to Dec. 2020
Fig. 7. White noise residuals ACF and PACF of food
Fig. 8. Forecasting food revenue from Sep. 2018 to Dec. 2020
Fig. 9. Time series data of beverage sales from June 2015 to Dec. 2020
Fig. 10. Differencing data of beverage sales from June 2015 to Dec. 2020
Fig. 11. Auto correlation function of beverage
Fig. 12. Partial auto correlation function of beverage
Fig. 13. White noise residuals ACF and PACF of beverage
Fig. 14. Forecasting beverage revenue from Sep. 2018 to Dec. 2020
Fig. 5. Auto correlation function of food
Fig. 6. Partial auto correlation function of food
Table 1. Categories of food and beverage
Table 2. Model fitness and statistics of food
Table 3. Model fitness and statistics of food
Table 4. Prediction of food & beverage sales
References
- C. O. Dolekoglu, P. Veziroglu, S. Keiyinci, "Analyzing passenger behavior towards on perception in-flight food safety and quality", New Trends and Issues Proceedings on Humanities and Social Sciences, Vol. 4, No. 10, pp.417-425, 2017. DOI : https://doi.org/10.18844/prosoc.v4i10.3112}
- J. Kivela, J. C. Crotts, "Tourism and Gastronomy: Gastronomy's Influence on How Tourists Experience a Destination", Journal of Hospitality and Tourism Research, Vol. 30, No. 3, pp.354-377, 2006. DOI : https://doi.org/10.1177/1096348006286797
- C. G. Brush, P. A. Vanderwerf, "A comparison of methods and sources for obtaining estimates of new venture performance", Journal of Business Venturing, Vol. 7, No. 2, pp.157-170, 1992. DOI : https://doi.org/10.1016/0883-9026(92)90010-O
- R. Sato, "Disease Management with ARIMA model in Time Series", Einstein. Vol. 11, No. 1, pp.128-131, 2013. DOI : https://dx.doi.org/10.1590%2FS1679-45082013000100024 https://doi.org/10.1590/S1679-45082013000100024
- M. S. Kim, K. W. Kim, S. S. Park, "A Study on the Air Travel Demand Forecasting using Time Series ARIMA-Intervention Model", Journal of the Korean Society for Aviation and Aeronautics, Vol. 20, No. 1, pp.63-74, 2012. https://doi.org/10.12985/KSAA.2012.20.1.063
- R. A. Stein, P. Shaman, "Bias of Autoregressive Spectral Estimator", Journal of the American Statistical Association, Vol. 85, No. 412, pp.1091-1098, Dec. 1990. DOI : https://doi.org/10.2307/2289606
- S. M. Crunk, "On tapering to improve Yule-Walker estimation in autoregressive processes" (1999). Dissertations available from ProQuest. AAI9926113. https://repository.upenn.edu/ dissertations/AAI9926113.
- G.E.P. Box, G. M. Jenkins, "Time series analysis : Forecasting and control, 2nd ed. San Francisco :Holden-Day, 1976.
- G.E.P. Box, G. M. Jenkins, G. C. Reinsel, "Time Series Anlaysis: Forecasting and Control", 3rd ed. New Jersey: Prentice Hall, 1994.
- C. Chatfield, "The analysis of time series, an introduction", 6th ed. : New York, Chapman & Hall/CRC, 2004.
- G.V. Glass, "Estimating the effects of inter vention into a nonstationary time series", American Educational Research Journal, Vol. 9, pp.463-477, 1972. DOI : https://doi.org/10.2307/1161762
- B.H. Goh, "The dynamic effects of the Asian Fina- ncial crisis on construction demand and tender price levels Singapore", Building and Environment, Vol. 40, No. 2, pp.267-276, 2005. DOI : https://doi.org/10.1016/j.buildenv.2004.07.012
- J. P. Nelson, "Consumer Bankruptcies and bankruptcy reform act: A time series intervention analysis 1960-1997", Journal of Financial Services Research, Vol. 17, No. 2, pp.181-200, 2002. DOI : https://doi.org/10.1023/A:1008166614928
- C. D. Lewis, Industrial and Business Forecasting Method, London: Butterworth, 1982.
- S. T. Kim, M. S. Kim, S. B. Park, J. I. Lee, "A Study on the Air Travel Demand Forecasting using ARIMAIntervention Model", Journal of the Korean Society for Aviation and Aeronautics, Vol. 21 No. 4 pp.77-89, 2013. https://doi.org/10.12985/ksaa.2013.21.4.077