DOI QR코드

DOI QR Code

A Study on the Characteristics of Coffee Ground(CG)-RDF by Using Different Drying Method

건조법에 따른 커피박 고형연료의 특성 고찰 연구

  • Kim, Sang-bin (Devision of Chemical & Environmental Engineering, Soonchunhyang University) ;
  • Ha, Jin-wook (Devision of Energy & Environmental Engineering, Soonchunhyang University)
  • 김상빈 (순천향대학교 화학공학.환경공학과) ;
  • 하진욱 (순천향대학교 에너지환경공학과)
  • Received : 2018.08.14
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

In this study, the characteristics of coffee grounds were reviewed by making them from solid fuel through heat-drying and oil-drying method. The differences in the higher calorific power by each dried sample were compared. And industrial analysis using the thermogravimetric analyzer was considered for applicability to organic waste and oily samples. Before and after drying, the surface of the specimen was observed with SEM equipment and the ingredients were measured through the EDS equipment. As a result, no other hazardous substances, such as heavy metals, were measured. Next, The differences between thermal decomposition and combustion reactions were considered through the TG and DTG curves. As a result, it is that the oil-dried coffee grounds is longer to burn than the heat-dried coffee grounds. Finally, the combustion gases emitted through the thermogravimetric analyzer were collected and the carbon monoxide and carbon dioxide performed qualitative and quantitative analysis using GC over time.

본 연구는 커피박을 열풍건조와 유중건조 방법을 통해 고형연료로 제조하여 특성고찰을 진행하였다. 그리고 각 건조시료의 발열량 차이를 비교였다. 그리고 열중량분석기를 이용한 공업분석법이 유기성 폐기물 및 유중처리 시료에 적용 여부를 고찰하였다. 그 결과, 로 내부를 $N_2$ 분위기에서 $100^{\circ}C$까지 가열한 후 180분 동안 유지한다. 그 후 $100^{\circ}C$에서 $950^{\circ}C$까지 가열하고 $950^{\circ}C$에서 7분 동안 유지한다. 이후 $600^{\circ}C$로 냉각하고 로 내부를 $O_2$ 분위기로 전환한다. 그리고 $815^{\circ}C$에서 30분 내 외로 온도를 유지하는 것이 적당하다. 다음으로 건조 전과 후 시료의 표면을 SEM장비로 관찰하였고 EDS 장비를 통해 성분을 측정하였다. 그 결과 중금속과 같은 기타 유해성분은 측정되지 않았다. 그리고 열중량분석기를 통해 TG와 DTG 곡선을 얻었고 이를 통해 열분해와 연소반응의 차이점을 고찰하였다. 그 결과, 유중건조 된 커피박이 열풍건조 된 커피박 보다 착화 시간이 긴 것으로 보인다. 마지막으로, 열중량분석기에서 배출되는 연소가스를 포집하여 시간에 따른 CO와 $CO_2$ 농도를 GC를 이용하여 정성 및 정량분석 하였다.

Keywords

SHGSCZ_2019_v20n2_451_f0001.png 이미지

Fig. 1. Results of proximate analysis by TGA

SHGSCZ_2019_v20n2_451_f0002.png 이미지

Fig. 2. SEM images of (a)Coffee Grounds, (b)Heat-dried CG, (c)Oil-dried CG

SHGSCZ_2019_v20n2_451_f0003.png 이미지

Fig. 3. TG curves of heat-dried and oil-dried coffee grounds in a nitrogen atmosphere

SHGSCZ_2019_v20n2_451_f0004.png 이미지

Fig. 4. TG curves of heat-dried and oil-dried coffee grounds in a air atmosphere

SHGSCZ_2019_v20n2_451_f0005.png 이미지

Fig. 5. DTG curves of heat-dried and oil-dried coffee grounds in a nitrogen atmosphere

SHGSCZ_2019_v20n2_451_f0006.png 이미지

Fig. 6. DTG curves of heat-dried and oil-dried coffee grounds in a air atmosphere

SHGSCZ_2019_v20n2_451_f0007.png 이미지

Fig. 7. Result of GC analysis of standards gas

SHGSCZ_2019_v20n2_451_f0008.png 이미지

Fig. 8. Result of GC analysis of Heat-dried CG

SHGSCZ_2019_v20n2_451_f0009.png 이미지

Fig. 9. Result of GC analysis of Oil-dried CG

SHGSCZ_2019_v20n2_451_f0010.png 이미지

Fig. 10. Carbon monoxide concentration over time

SHGSCZ_2019_v20n2_451_f0011.png 이미지

Fig. 11. Carbon dioxide concentration over time

Table 1. Method by TGA for proximate analysis of coffee grounds

SHGSCZ_2019_v20n2_451_t0001.png 이미지

Table 2. Experimental conditions

SHGSCZ_2019_v20n2_451_t0002.png 이미지

Table 3. Experimental conditions

SHGSCZ_2019_v20n2_451_t0003.png 이미지

Table 4. Results of proximate analysis of CG

SHGSCZ_2019_v20n2_451_t0004.png 이미지

Table 5. Result of EDS Component analysis

SHGSCZ_2019_v20n2_451_t0005.png 이미지

References

  1. Je-yong Chae, "Diffusion of bio oil as fuel for power generation from next year, 2018. DOI : http://www.e2news.com/news/articleView.html?idx no=202113
  2. Hyun-sook Kim "A Study on Effect of Horticultural Crops Growth by Mixing ratios of coffee residuce compost", Hansei Univ. publishers, pp. 1-3, 2016. DOI : http://dl.nanet.go.kr/MarcView.do?cn=KDMT1201722646
  3. Baquero, M.C., Giraldo, L., Moreno, J.C., Suarez-Garcia, F., Martinez-Alonso, A., Tascon, J.M.D. "Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid", Journal of Analytical and Applied Pyrolysis 70(2): 779-784, 2003. DOI : https://www.sciencedirect.com/science/article/pii/S0165237002001808 https://doi.org/10.1016/S0165-2370(02)00180-8
  4. Ahn, S.H. "Effect of heating temperature and time of coffee waste on the adsorptivity of formaldehyde", Journal of the Korean Wood Science and Technology 43(3): 390-399, 2015. DOI : https://www.researchgate.net/scientific-contributions/35936287_Sye_Hee_Ahn https://doi.org/10.5658/WOOD.2015.43.3.390
  5. So-Yeon Park, Sang-Bin Kim, Jin-Wook Ha, "A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method", Proc. of KAIS conference, Vol. 19, No. 2, pp.660-667, 2018. DOI : http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07397161
  6. Sang-Woo Lee, Ki-Heon Kim, Dong-Gun Hwang, Heung-Min Yoo, "A Study on Establishment of Proximate Analysis Method of Waste by TGA", J. of Korea of Waste Management, Vol. 31, No. 4, pp. 382-387, 2014. DOI : http://www.jkswm.or.kr/journal/article.php?code=3109 https://doi.org/10.9786/kswm.2014.31.4.382
  7. Wang, G, Li, W., Li, B. and Chen, H., "TG study on pyrolysis of biomass and its three components under syngas", Energy & Fuels, Vol. 87, No. 4-5, pp. 552-558, 2008. DOI : https://www.sciencedirect.com/science/article/pii/S0016236107001111 https://doi.org/10.1016/j.fuel.2007.02.032
  8. Yang, H., Yan, R., Chen, H. P., Zheng, C. G, Lee, D. H. and Liang, D. T., "In-depth investigation of biomass pyrolysis based on three major components": hemicellulose, cellulose and lignin, Energy & Fuels, Vol. 20, pp. 388-393, 2006. DOI : https://pubs.acs.org/doi/10.1021/ef0580117