DOI QR코드

DOI QR Code

Observation on the Seabed around Simheungteak Seamount near Dokdo and using Mini-ROV

소형 ROV를 활용한 독도 및 심흥택해산 해저면 탐사

  • 민원기 (한국해양과학기술원 동해연구소) ;
  • 노현수 (한국해양과학기술원 동해연구소) ;
  • 김창환 (한국해양과학기술원 동해연구소) ;
  • 박찬홍 (한국해양과학기술원 동해연구소) ;
  • 김동성 (한국해양과학기술원 해양생태연구센터)
  • Received : 2017.07.05
  • Accepted : 2019.01.24
  • Published : 2019.02.28

Abstract

ROV surveys were conducted using 500 meter mini class ROV with HD video camera, 2 LED lights, a simple manipulator and 8 thrusters near the Dokdo and Simheungtaek seamount. Total six dives have been conducted using the ROV "V8 SII" from Sweden and ROV's support ship, "KOSAL V" at 4 stations between 45 and 370 meters with diving time ranged from 30 to 120 minutes. Dense communities of sea anemone (Actinostolidae sp.) and ophiuroids (Ophiuridae sp.) on the surface of rocky bottom and snow crab on the soft bottom with muddy-sand were observed at northwestern part of Simheungtaek seamount. We obtained the following results 1) habitats information for snow crab, one of the major fisheries resources, and deep-sea fauna, 2) observation on the specific topography and sediment conditions, 3) observation of the seabed surface covered with the discarded fishing gears. This study represents the first report of in situ visual observation of deep-sea organisms and their habitats near the Dokdo slopes and flat top of the Simheungtaek seamount in the East Sea. These results indicated that immediate oceanographic survey using the mini class ROV is available in the East Sea.

독도와 심흥택 해산의 정상부 및 사면에서 HD 급 비디오카메라, 2기의 LED 조명, 1개의 다목적 로봇팔, 8개의 추진기가 장착된 소형 ROV로 해저면 조사를 수행하였다. 조사에 사용된 장비는 스웨덴에서 제작된 500 m급 소형 무인잠수정 "V8 SII"과 지원모선인 "코쌀 5호"였으며, 수심 범위가 45~370 m인 조사해역의 4정점에서 총 6회 잠수를 수행하였고, 잠수시간은 운용조건에 따라 약 30~120분 소요되었다. 조사 결과, 독도 주변 해저 경사면과 해산 정상부 부근에는 다양한 크기의 암석 및 밀도 높은 부착생물인 심해성 말미잘(Actinostolidae sp.), 거미불가사리류(Ophiuridae sp.), 대게류의 서식이 확인되었다. 본 조사를 통해 얻어진 결과는 1) 주요 수산자원인 대게류의 서식 확인 및 심해생물상 자료, 2) 해저면의 퇴적상 및 지형 특성 확인, 3) 육상기원 어구 폐기물 확인 등이다. 본 탐사는 수산자원 및 생태학적으로 중요한 독도 해저면과 주변 해산의 수중환경의 첫 기록으로서, 동해의 해산 정상부의 심해 저서환경 및 생물의 직접관찰에 소형 ROV가 활용 가능함을 시사하였다.

Keywords

GHOHBG_2019_v24n1_18_f0001.png 이미지

Fig. 1. The mini class ROV “Ocean modules V8 SII”

GHOHBG_2019_v24n1_18_f0002.png 이미지

Fig. 2. The A-frame and winch system for operation of ROV “Ocean modules V8 SII”

GHOHBG_2019_v24n1_18_f0003.png 이미지

Fig. 3. The main PC (left) and control system with display monitors (right) in the support vessel “Kossal V”

GHOHBG_2019_v24n1_18_f0004.png 이미지

Fig. 4. A transponder system (left: display monitor with navigation program, right: underwater transponder) for positioning of ROV

GHOHBG_2019_v24n1_18_f0005.png 이미지

Fig. 5. A map of station and survey area with topography

GHOHBG_2019_v24n1_18_f0006.png 이미지

Fig. 6. Dense communities of sea anemone (Actinostolidae sp.) and ophiuroids (Ophiuridae sp.) on the surface of rocky bottom at Dive#1

GHOHBG_2019_v24n1_18_f0007.png 이미지

Fig. 7. Images of soft bottom with ripple marks and various rocks Dense Communities of sea anemone (Actinostolidae sp.) and ophiuroids (Ophiuridae sp.) on the rocky area at Dive#4

GHOHBG_2019_v24n1_18_f0008.png 이미지

Fig. 8. Images of megabenthos on the gravely mud bottom and various rock types at Dive#6

References

  1. Choi, H.T., P.M. Lee, C.M. Lee, B.H. Jun, J.H. Li, K.H. Kim and S.C. Ryu, 2007. Development of a Deep-sea ROV, Hemire and its sea trial. The Institute of Electronics Engineers of Korea - System and Control, 44(3): 70-76.
  2. Deep-Sea Biology Society, 2015. 14th deep-sea biology symposium: abstract book. Universidade de Aveiro, 367 pp.
  3. Fujikura, K., T. Okutani and T. Maruyama, 2008. Deep-Sea Life - Biological Observations Using Research Submersibles. Tokai University Press, 487 pp.
  4. Hammond, A.L., 1975. Project FAMOUS: Exploring the Mid-Atlantic Ridge Science. Science, 187: 823-825. https://doi.org/10.1126/science.187.4179.823
  5. Herring, P. 2002. The Biology of the Deep Ocean. Oxford University Press, 314 pp.
  6. Hessler, R.R. and W.M. Smithey Jr., 1983. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Rona, P.A., Bostrom, L. Laubier and K.L. Smith, Jr. (eds) Hydrothermal processes at Seafloor spreading centers, Plenum Press, New York, pp. 735-770.
  7. Jin, S.J., S.Y. Lim, S.H. Park and S.H. Yoo, 2014. Measuring the Scientific Benefits from the Deep-sea Human-operated Vehicle Project: A Choice Experiment Study, Ocean and Polar Res., 36(3): 277-288. https://doi.org/10.4217/OPR.2014.36.3.277
  8. Kim, W.S., 2007. Endless scientific survey for mystery underwater world. Science and Technology, 7: 69-73.
  9. Lee, P.M., 2007. Discovering the 30000 Leagues, under the sea - Mystery world, Science and Technology, 7: 74-79.
  10. Lee, P.M., B.H, Jun, H. Baek, B.H. Kim, H.W. Shim, J.Y. Park, S.Y. Yoo, W.Y. Jeong, S.H. Baek and W.S. Kim, 2016. Explorations of Hydrothermal Vents in the Southern Mariana Arc Submarine Volcanoes using the ROV Hemire. Journal of Korean Society of Ocean Engineers, 30(5), pp. 389-399.
  11. Lee, P.M. and Y.W. Seo, 2006. Development of the 6000 m class deep-sea unmanned submersible "HEMIRE" and "HENUBI" system. World of Electricity, 55(3): 20-24.
  12. Lutz, R.A. and P.G. Falkowski, 2012. Ocean science: A dive to Challenger Deep. Science 336: 301-302. https://doi.org/10.1126/science.1222641
  13. MEST (Ministry of Education, Science and Technology), 2009. East Sea / Dokdo Marine Science Program. Misnistry of education, science and technology, 132 pp.
  14. MLTM (Ministry of Land, Transport and Maritime Affairs), 2012. Development of an advanced deep-sea unmanned underwater vehicle. phase II. Ministry of Land, Transport and Maritime Affairs, 670 pp.
  15. MOF (Misnistry of Oceans and Fisheries), 2014a. Development project of deep sea manned submersibles. Misnistry of oceans and fisheries, 715 pp.
  16. MOF (Misnistry of Oceans and Fisheries), 2014b. Development of overseas marine bioresources and a system for their utilization. Misnistry of oceans and fisheries, 341 pp.
  17. Min, W.G., J.U. Kim, W.S. Kim, D.S. Kim, P.M. Lee and J.H. Kang, 2016. Deep-sea floor exploration in the East Sea using ROV HEMIRE, J. of the Korea Academia-Industrial, 17(4): 222-230.
  18. Monastersky, R., 2012. Dive Master: The US flagship submersible Alvin is getting a partial upgrade. But deep-sea exploration faces some rough water. Nature, 489: 194-196. https://doi.org/10.1038/489194a
  19. Nam, S.R. and Y.B. Kim, 2013. East Sea, Asking the future of Sea. Korean Studies Information, 127 pp.
  20. National Research Council, 1996. Undersea Vehicles and National Needs. The National Academies Press, Washington, 116 pp.
  21. National Research Council, 2003. Exploration of the Seas: Voyage into the Unknown. The National Academies Press, Washington, 228 pp.
  22. National Research Council, 2004. Future Needs in Deep Submergence Science: Occupied and Unoccupied Vehicles in Basic Ocean Research. National Academies Press, Washington, 152 pp.
  23. NFRDI (National Fisheries Research and Development Institute), 2001. Oceanographic handbook of the neighbouring seas of Korea (4th). National Fisheries Research and Development Institute, 436 pp.
  24. Park, H.H., E.C. Jeong, B.S. Bae, Y.S. Yang, S.J. Hwang, J.H. Park, Y.S. Kim, S.I. Lee and S.H. Choi, 2007. Fishing investigation and species composition of the catches caught by a bottom trawl in the deep East Sea. 43(3): 183-191. https://doi.org/10.3796/KSFT.2007.43.3.183
  25. Sohn, M.H., H.W. LEE, B.K. Hong and Y.Y. Chun, 2010. Seasonal variation of species composition by depths in deep sea ecosystem of the East Sea of Korea. J. Kor. Soc. Fish Tech., 46(4): 376-391. https://doi.org/10.3796/KSFT.2010.46.4.376
  26. Walsh, D., 1990. Thirty thousand feet and thirty years later: Some thoughts on the deepest presence concept. Mar. Tech. Soc. J., 24(2): 7-8.
  27. Yoo, H.S., 2007. Treasure ship Dmitri Donskoi in Ulleung island. Jisungsa, 104 pp.