DOI QR코드

DOI QR Code

The ALTADENA and PASADENA studies in benchtop NMR spectrometer

  • So, Howon (Department of Chemistry, Korea Military Academy) ;
  • Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
  • Received : 2019.02.19
  • Accepted : 2019.02.27
  • Published : 2019.03.20

Abstract

Parahydrogen induced hyperpolarization (PHIP) technique is extensively studied to increase the sensitivity of the conventional NMR spectroscopy and recently try to apply this advanced technique into the revolutionary future of the MRI. The other hyperpolarization technique, which is widely utilized, is DNP (Dynamic Nuclear Polarization)-based hyperpolarization one. Despite its great advances in these fields, it contains several drawbacks to overcome: fast relaxation time, expensive equipment is needed, long build-up time is required (several hours), and batch scale material is hyperpolarized. To overcome all those limitations, one can effectively harness the hyperpolarized spin state of parahydrogen. One important step for utilizing the spin state of parahydrogen is doing well-developed experiments of ALTADENA and PASADENA. Based on those concepts, we successfully obtain the hydrogenation signals of ALTADENA and PASADENA from styrene by using benchtop NMR spectrometer. Also those signals were conceptually analyzed and confirmed with different mechanisms. To our best knowledge, those experiments using 1.4T (benchtop NMR) is the first reported one. Considering these experiments, we hope that parahydrogen-based hyperpolarization transfer studies in NMR/MRI will be broadened in Korea in the future.

Keywords

JGGMB2_2019_v23n1_6_f0001.png 이미지

그림 1. PASADENA와 ALTADENA 실험방법의 모식도. PASADENA의 경우에는 직접 1.4 T 자기장내에서 반응을 보내며 수소화된 반응의 신호를 얻었으며 ALTADENA의 경우에는 지구자기장에서 수소화 시킨후 빠르게 1.4T benchtop NMR에서 신호를 얻었다.

JGGMB2_2019_v23n1_6_f0002.png 이미지

그림 2. 파라수소의 파동함수와 해당 파동함수로부터 기인한 PASADENA와 ALTADENA의 다른 자기장세기 및 상태에서의 초분극화된 스핀상태의 그림.

JGGMB2_2019_v23n1_6_f0003.png 이미지

그림 3. 1.4 T Magritek Benchtop NMR 분광기를 통해 얻은 1H NMR 스펙트럼 (a), PASADENA의 스펙트럼을 보여주고있으며 (b), ALTADENA의 스펙트럼을 보여주고있음.

References

  1. S. Hediger, D. Lee, F. Mentink-Vigier and G.D. Paepe, eMgaRes 7, 105 (2018)
  2. U . Akbey and H. Oschkinat, J. Magn. Reson. 29, 213(2016) https://doi.org/10.1016/0022-2364(78)90147-6
  3. H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015) https://doi.org/10.6564/JKMRS.2015.19.3.124
  4. J. H. Shim, J. Kor. Magn. Reson. Soc. 21, 114 (2017) https://doi.org/10.6564/JKMRS.2017.21.4.114
  5. J. Lee and J. H. Lee, J. Kor. Magn. Reson. Soc. 21, 1 (2017) https://doi.org/10.6564/JKMRS.2017.21.1.01
  6. Y. Bai, P. A. Hill, and I. J. Dmochowski, Anal. Chem. 84, 9935 (2012). https://doi.org/10.1021/ac302347y
  7. C. Witte and L. Schroder, NMR Biomed. 26, 788 (2013). https://doi.org/10.1002/nbm.2873
  8. K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.114
  9. S. Kwon, S. Min, H. Chae, S. K. Namgoong, and K. Jeong, J. Kor. Magn. Reson. Soc. 21, 126 (2017) https://doi.org/10.6564/JKMRS.2017.21.4.126
  10. J. Shim and K. Jeong, J. Kor. Magn. Reson. Soc. 22, 1 (2018) https://doi.org/10.6564/JKMRS.2018.22.1.001
  11. S. D. Riegel and G. M. Leskowitx, TrAC Trends Anal. Chem. 83, 27 (2016) https://doi.org/10.1016/j.trac.2016.01.001
  12. I. V. Koptyug, V. V. Zhivonitko, and K V Kovtunov, ChemPhysChem 11, 2086 (2010)
  13. P. J. Carson, C. R. Bowers, and D. P. Weitekamp, J. Am. Chem. Soc. 123, 11821 (2001) https://doi.org/10.1021/ja010572z
  14. K. Jeong, S. Min, H. Chae, and S. K. Namgoong, Magn. Reson. Chem. 56, 1089 (2018) https://doi.org/10.1002/mrc.4756
  15. K. Jeong, S. Min, H. Chae, and S. K. Namgoong, Magn. Reson. Chem. 57, 44 (2019) https://doi.org/10.1002/mrc.4791