DOI QR코드

DOI QR Code

금속-금속 표면 접촉을 활용한 정전 소자

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact

  • Chung, Jihoon (School of Mechanical Engineering, Chung-ang University) ;
  • Heo, Deokjae (School of Mechanical Engineering, Chung-ang University) ;
  • Lee, Sangmin (School of Mechanical Engineering, Chung-ang University)
  • 투고 : 2019.11.15
  • 심사 : 2019.12.13
  • 발행 : 2019.12.31

초록

정전 소자는 기계적 에너지를 전기적 에너지로 바꿀 수 있는 소자로, 제작 공정이 간단하고 높은 전기적 출력을 발생시키는 장점이 부각되어 주목받고 있는 소자이다. 정전 소자가 소개된 이례 높은 출력으로 휴대형 전자기기를 충전할 수 있는 시스템이 소개되었으나, 최근 연구에서는 기체 항복과 전계 방출 현상으로 인한 출력의 한계가 보고되고 있다. 이와 같은 한계를 극복하기 위하여 본 연구에서는 금속-금속 표면 간 접촉을 활용하여 정전 소자에 이온 강화 전계 방출 현상과 전자 사태를 유도해 전자가 직접적으로 전극 사이를 흐를 수 있는 정전 소자 설계를 소개한다. 본 정전 소자의 출력은 평균 피크 개로 전압 340 V, 평균 피크 폐회로 전류 10 mA 정도로 측정되었고, 표면 전하 생성층의 표면 전하의 양에 따라 출력이 변화하였다. 본 연구에서 개발된 정전 소자는 실효 출력이 약 0.9 mW로, 기존 정전 소자에 비해 2.4배 높은 일률을 보였다. 본 정전 소자는 높은 출력을 통해 배터리, 커패시터 등을 사용하는 휴대형 전자기기 및 센서들을 독립적으로 충전시켜 유용하게 사용될 수 있을 것으로 사료된다.

Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.

키워드

참고문헌

  1. Gibson, T.L., and Kelly, N.A., "Solar Photovoltaic Charging of Lithium-ion Batteries", Journal of Power Sources, Vol. 195, No. 12, 2010, pp. 3928-3932. https://doi.org/10.1016/j.jpowsour.2009.12.082
  2. Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P., and Feng, H., "Electromagnetic Energy Harvesting from Vibrations of Multiple Frequencies," Journal of Micromechanics and Microengineering, Vol. 19, No. 3, 2009, pp. 035001. https://doi.org/10.1088/0960-1317/19/3/035001
  3. Sholin, V., Olson, J.D., and Carter, S.A., "Semiconducting Polymers and Quantum Dots in Luminescent Solar Concentrators for Solar Energy Harvesting", Journal of Applied Physics, Vol. 101, No. 12, 2007, pp. 123114. https://doi.org/10.1063/1.2748350
  4. Jabbar, H., Song, Y.S., and Jeong, T.T., "RF Energy Harvesting System and Circuits for Charging of Mobile Devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 2010, pp. 247-253. https://doi.org/10.1109/TCE.2010.5439152
  5. Cuadras, A., Gasulla, M., and Ferrari, V., "Thermal Energy Harvesting Through Pyroelectricity," Sensors and Actuators A: Physical, Vol. 158, No. 1, 2010, pp. 132-139. https://doi.org/10.1016/j.sna.2009.12.018
  6. Sodano, H.A., Park, G., Leo, D.J., and Inman, D.J., "Use of Piezoelectric Energy Harvesting Devices for Charging Batteries," in Smart Structures and Materials. International Society for Optics and Photonics, 2003.
  7. Sodano, H.A., Inman, D.J., and Park, G., "Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries", Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, 2005, pp. 799-807. https://doi.org/10.1177/1045389X05056681
  8. Lee, S., Bae, S.-H., Lin, L., Yang, Y., Park, C., Kim, S.-W., Cha, S.N., Kim, H., Park, Y.J., and Wang, Z.L., "Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor," Advanced Functional Materials, Vol. 23, No. 19, 2013, pp. 2445-2449. https://doi.org/10.1002/adfm.201202867
  9. Lee, S., Ko, W., and Hong, J., "Enhanced Performance of Triboelectric Nanogenerators Integrated with ZnO Nanowires," Journal of Nanoscience and Nanotechnology, Vol. 14, No. 12, 2014, pp. 9319-9322. https://doi.org/10.1166/jnn.2014.10114
  10. Fan, F.R., Tian, Z.Q., and Wang, Z.L., "Flexible triboelectric generator," Nano Energy, Vol. 1, No. 2, 2012, pp. 328-334. https://doi.org/10.1016/j.nanoen.2012.01.004
  11. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., and Wang, Z.L., "Theory of Sliding-Mode Triboelectric Nanogenerators," Advanced Materials, Vol. 25, No. 43, 2013, pp. 6184-6193. https://doi.org/10.1002/adma.201302808
  12. Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., and Wang, Z.L., "Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System," ACS Nano, Vol. 7, No. 10, 2013, p. 9213-9222. https://doi.org/10.1021/nn403838y
  13. Dudem, B., Kim, D.H., Mule, A.R., and Yu, J.S., "Enhanced Performance of Microarchitectured PTFE-Based Triboelectric Nanogenerator via Simple Thermal Imprinting Lithography for Self-Powered Electronics," ACS Applied Materials & Interfaces, Vol. 10, No. 28, 2018, pp. 24181-24192. https://doi.org/10.1021/acsami.8b06295
  14. Chung, J., Yong, H., Moon, H., Duong, Q.V., Choi, S.T., Kim, D., and Lee, S., "Hand‐Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices", Advanced Science, Vol. 5, Iss. 11, 2018, pp. 1801054. https://doi.org/10.1002/advs.201801054
  15. Maitra, A., Paria, S., Karan, S.K., Bera, R., Bera, A., Das, A.K., Si, S.K., Halder, L., De, A., and Khatua, B.B., "Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation," Acs Applied Materials & Interfaces, Vol. 11, No. 5, pp. 5022-5036.
  16. Yang, B., Tao, X.M., and Peng, Z.H., "Upper Limits for Output Performance of Contact-mode Triboelectric Nanogenerator Systems," Nano Energy, Vol. 57, 2019, pp. 66-73. https://doi.org/10.1016/j.nanoen.2018.12.013
  17. Zi, Y., Wu, C., Ding, W., and Wang, Z.L., "Maximized Effective Energy Output of Contact‐Separation‐Triggered Triboelectric Nanogenerators as Limited by Air Breakdown," Advanced Functional Materials, Vol. 27, No. 24, 2017, pp. 1700049. https://doi.org/10.1002/adfm.201700049
  18. Chun, J.S., Ye, B.U., Lee, J.W., Choi, D., Kang, C.-Y., Kim, S.-W., Wang, Z.L., and Baik, J.M., "Boosted Output Performance of Triboelectric Nanogenerator via Electric Double Layer Effect," Nature Communications, Vol. 7, 2016, pp. 12985. https://doi.org/10.1038/ncomms12985
  19. Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Xi, Y., Wang, X., Guo, H., Hu, C., and Wang, X.L., "Integrated Charge Excitation Triboelectric Nanogenerator," Nature Communications, Vol. 10, 2019, pp. 1426. https://doi.org/10.1038/s41467-019-09464-8
  20. Paschen, F., "Ueber die zum Funkenubergang in Luft, Wasserstoff und Kohlensaure bei verschiedenen Drucken erforderliche Potentialdifferenz," Annalen der Physik, Vol. 273, No. 5, 1889, pp. 69-96. https://doi.org/10.1002/andp.18892730505
  21. Go, D., and Venkattraman, A., "Microscale Gas Breakdown: Ion-enhanced Field Emission and the Modified Paschen's Curve," Journal of Physics D: Applied Physics, Vol. 47, No. 50, 2014, pp. 503001. https://doi.org/10.1088/0022-3727/47/50/503001
  22. Jensen, K.L., "Introduction to the Physics of Electron Emission", Wiley Online Library, 2017.