Browse > Article
http://dx.doi.org/10.7234/composres.2019.32.6.301

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact  

Chung, Jihoon (School of Mechanical Engineering, Chung-ang University)
Heo, Deokjae (School of Mechanical Engineering, Chung-ang University)
Lee, Sangmin (School of Mechanical Engineering, Chung-ang University)
Publication Information
Composites Research / v.32, no.6, 2019 , pp. 301-306 More about this Journal
Abstract
Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.
Keywords
Triboelectric nanogenerator; Metal-to-metal contact; Direct electron flow; Energy harvesting; Electron avalanche;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gibson, T.L., and Kelly, N.A., "Solar Photovoltaic Charging of Lithium-ion Batteries", Journal of Power Sources, Vol. 195, No. 12, 2010, pp. 3928-3932.   DOI
2 Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P., and Feng, H., "Electromagnetic Energy Harvesting from Vibrations of Multiple Frequencies," Journal of Micromechanics and Microengineering, Vol. 19, No. 3, 2009, pp. 035001.   DOI
3 Sholin, V., Olson, J.D., and Carter, S.A., "Semiconducting Polymers and Quantum Dots in Luminescent Solar Concentrators for Solar Energy Harvesting", Journal of Applied Physics, Vol. 101, No. 12, 2007, pp. 123114.   DOI
4 Jabbar, H., Song, Y.S., and Jeong, T.T., "RF Energy Harvesting System and Circuits for Charging of Mobile Devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 2010, pp. 247-253.   DOI
5 Cuadras, A., Gasulla, M., and Ferrari, V., "Thermal Energy Harvesting Through Pyroelectricity," Sensors and Actuators A: Physical, Vol. 158, No. 1, 2010, pp. 132-139.   DOI
6 Sodano, H.A., Park, G., Leo, D.J., and Inman, D.J., "Use of Piezoelectric Energy Harvesting Devices for Charging Batteries," in Smart Structures and Materials. International Society for Optics and Photonics, 2003.
7 Sodano, H.A., Inman, D.J., and Park, G., "Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries", Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, 2005, pp. 799-807.   DOI
8 Fan, F.R., Tian, Z.Q., and Wang, Z.L., "Flexible triboelectric generator," Nano Energy, Vol. 1, No. 2, 2012, pp. 328-334.   DOI
9 Lee, S., Bae, S.-H., Lin, L., Yang, Y., Park, C., Kim, S.-W., Cha, S.N., Kim, H., Park, Y.J., and Wang, Z.L., "Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor," Advanced Functional Materials, Vol. 23, No. 19, 2013, pp. 2445-2449.   DOI
10 Lee, S., Ko, W., and Hong, J., "Enhanced Performance of Triboelectric Nanogenerators Integrated with ZnO Nanowires," Journal of Nanoscience and Nanotechnology, Vol. 14, No. 12, 2014, pp. 9319-9322.   DOI
11 Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., and Wang, Z.L., "Theory of Sliding-Mode Triboelectric Nanogenerators," Advanced Materials, Vol. 25, No. 43, 2013, pp. 6184-6193.   DOI
12 Zi, Y., Wu, C., Ding, W., and Wang, Z.L., "Maximized Effective Energy Output of Contact‐Separation‐Triggered Triboelectric Nanogenerators as Limited by Air Breakdown," Advanced Functional Materials, Vol. 27, No. 24, 2017, pp. 1700049.   DOI
13 Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., and Wang, Z.L., "Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System," ACS Nano, Vol. 7, No. 10, 2013, p. 9213-9222.   DOI
14 Dudem, B., Kim, D.H., Mule, A.R., and Yu, J.S., "Enhanced Performance of Microarchitectured PTFE-Based Triboelectric Nanogenerator via Simple Thermal Imprinting Lithography for Self-Powered Electronics," ACS Applied Materials & Interfaces, Vol. 10, No. 28, 2018, pp. 24181-24192.   DOI
15 Chung, J., Yong, H., Moon, H., Duong, Q.V., Choi, S.T., Kim, D., and Lee, S., "Hand‐Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices", Advanced Science, Vol. 5, Iss. 11, 2018, pp. 1801054.   DOI
16 Maitra, A., Paria, S., Karan, S.K., Bera, R., Bera, A., Das, A.K., Si, S.K., Halder, L., De, A., and Khatua, B.B., "Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation," Acs Applied Materials & Interfaces, Vol. 11, No. 5, pp. 5022-5036.
17 Yang, B., Tao, X.M., and Peng, Z.H., "Upper Limits for Output Performance of Contact-mode Triboelectric Nanogenerator Systems," Nano Energy, Vol. 57, 2019, pp. 66-73.   DOI
18 Chun, J.S., Ye, B.U., Lee, J.W., Choi, D., Kang, C.-Y., Kim, S.-W., Wang, Z.L., and Baik, J.M., "Boosted Output Performance of Triboelectric Nanogenerator via Electric Double Layer Effect," Nature Communications, Vol. 7, 2016, pp. 12985.   DOI
19 Paschen, F., "Ueber die zum Funkenubergang in Luft, Wasserstoff und Kohlensaure bei verschiedenen Drucken erforderliche Potentialdifferenz," Annalen der Physik, Vol. 273, No. 5, 1889, pp. 69-96.   DOI
20 Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Xi, Y., Wang, X., Guo, H., Hu, C., and Wang, X.L., "Integrated Charge Excitation Triboelectric Nanogenerator," Nature Communications, Vol. 10, 2019, pp. 1426.   DOI
21 Go, D., and Venkattraman, A., "Microscale Gas Breakdown: Ion-enhanced Field Emission and the Modified Paschen's Curve," Journal of Physics D: Applied Physics, Vol. 47, No. 50, 2014, pp. 503001.   DOI
22 Jensen, K.L., "Introduction to the Physics of Electron Emission", Wiley Online Library, 2017.