DOI QR코드

DOI QR Code

하천 내 수질 개선을 위한 박층류 하도의 적용 및 평가

Application and Evaluation of the Sheet Flow Channel for Water Quality Improvement in the Stream

  • 이두한 (한국건설기술연구원 국토보전연구본부) ;
  • 김명환 (한국건설기술연구원 국토보전연구본부) ;
  • 구정은 (한국환경공단 물융합연구부) ;
  • 김원 (한국건설기술연구원 국토보전연구본부)
  • Lee, Du Han (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Myounghwan (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Gu, Jung-Eun (Department of Water Industry Promotion, Korea Water Cluster, Korea Environment Corporation) ;
  • Kim, Won (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2019.10.23
  • 심사 : 2019.11.18
  • 발행 : 2019.12.31

초록

본 연구는 하천 내의 자연형 수질정화기법으로 박층류 하도의 설계방법과 효율에 대해서 연구하였다. 박층류 하도의 설계인자를 고려하여 설계를 수행하고 오산천 고수부지에 시험구간을 조성하여 모니터링을 수행하였다. 수위, 유속, 유량, T-N, T-P, NO3-N 등에 대한 모니터링 결과를 이용하여 제거효율을 평가하고 설계식을 제시하였다. T-N, T-P, NO3-N 등의 제거효율은 10 - 20%로 나타났으며 체류시간과 일정한 관계를 나타내고 있다. 또한 조류 형성과 유속 간의 관계를 통해 최소 유속 조건을 제시하였다. 본 연구에서 제시된 체류시간과 제거효율의 관계식은 차집수로 설계와 운영에 유용할 것으로 기대된다.

This study investigated design factors and removal efficiencies of a sheet flow channel as natural type water improvement techniques in the stream. The channel was designed considering the design factors, then constructed and monitored in the test bed of the Osan stream's floodplain. Water lever, velocity, discharge, T-P, T-N, and NO3-N were monitored and the removal efficiencies and design formula were suggested. Overall efficiencies of T-P, T-N, and NO3-N range 10 - 20%, and they show consistent relations with residence times. Minimum velocity requirement is also suggested from the relation of algae conditions and velocities. Relation formula of residence time and removal efficiency will be applicable in the design and operation process of a sheet flow channel.

키워드

참고문헌

  1. Cho, H.M. 2004. Application and performance evaluation of river water purification facilities. Seoul Development Institute, In Korean.
  2. Fang, H., Chen, Y., Huang, L., and He, G. 2017. Analysis of biofilm bacterial communities under different shear stresses using size-fractionated sediment, Scientific reports 7:1299. DOI:10.1038/s41598-017-01446-4. www.nature.com.
  3. Godillot R., Ameziane T., Caussade B. and Capblanc J. 2003. Interplay between turbulence and periphyton in rough open-channel flow. Journal of Hydraulic Research, 39(3): 227-239. https://doi.org/10.1080/00221680109499826
  4. Lee, Hangu, Kim, Hojun, and Choi, Kwangsun. 2017. Cause and monitoring of algal bloom in 4 major rivers. Water for future, 50(7): 16-21.
  5. Moulin, F.Y., Peltier, Y., and Eiff, O. 2001. Experimental study of the interaction between a turbulent flow and a river biofilm growing on macrorugosities, J. of Hydraulic Research, Vol 39, p. 227-239. https://doi.org/10.1080/00221680109499826
  6. Paerl, H.W., Fulton III, R.S., Moisander, P.H., and Dyble, J. 2001. Harmful freshwater algal blooms, with and emphasis on cyanobacteria, The Scientific World, 1: 76-113. https://doi.org/10.1100/tsw.2001.138
  7. Park, J.R. 2000. Real application cases of sheet flow improving stream water quality. Brief of construction techniques. No.9. pp. 26-27.
  8. Park, N.B., Park, M.S., Lee, J.H., and Myeong, J.I. 2013. A study of nitrification kinetics in the biofilter process for aquaculture water treatment: A review, Kor. J. Fish Aquat. Sci. 46(6): 675-681. https://doi.org/10.5657/KFAS.2013.0675
  9. Yin, Z., Koo, Y., Lee, E., and Seo, D. 2015. Development of integrated management system of stormwater retention and treatment in waterside land for urban stream environment, J.Korean Soc. Environ. Eng., 37(2): 126-135. https://doi.org/10.4491/KSEE.2015.37.2.126