참고문헌
- E. S. Elshazly, S. M. El-Hout, and M. El-Sayed Ali, "Yttria Tetragonal Zirconia Biomaterials: Kinetic Investigation," J. Mater. Sci. Technol., 27 [4] 332-37 (2011). https://doi.org/10.1016/S1005-0302(11)60070-4
- M. Guazzato, M. Albakry, S. P. Ringer, and M. V. Swain, "Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials: Part II. Zirconia- Based Dental Ceramics," Dent. Mater., 20 [5] 4449-56 (2004).
- K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, and J. Hojo, "Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering," J. Am. Ceram. Soc., 91 [6] 1888-97 (2008). https://doi.org/10.1111/j.1551-2916.2008.02350.x
- M. J. Park, S. K. Yang, and J. B. Kang, "Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP," J. Korean Ceram. Soc., 43 [10] 640-45 (2006). https://doi.org/10.4191/KCERS.2006.43.1.010
- S. K. Yang, K. M. Bae, B. R. Cho, and J. B. Kang, "Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia," J. Korean Ceram. Soc., 42 [6] 411-16 (2005). https://doi.org/10.4191/KCERS.2005.42.6.411
- H. Yilmaz, C. Aydin, and B. E. Gul, "Flexural Strength and Fracture Toughness of Dental Core Ceramics," J. Prosthet. Dent., 98 [2] 120-28 (2007). https://doi.org/10.1016/S0022-3913(07)60045-6
- I. Denry and J. R. Kelly, "State of the Art of Zirconia for Dental Applications," Dent. Mater., 24 [3] 299-307 (2008). https://doi.org/10.1016/j.dental.2007.05.007
- F. Egilmez, G. Ergun, I. Cekic-Nagas, P. K. Vallittu, and L. V. Lassila, "Factors Affecting the Mechanical Behavior of Y-TZP," J. Mech. Behave. Biomed. Mater., 37 78-87 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.013
-
S. Tekeli, "Fracture Toughness (
$K_{IC}$ ), Hardness, Sintering and Grain Growth Behavior of$8YSCZ/Al_2O_3$ Composites Produced by Colloidal Processing," J. Alloys Compd., 391 [1-2] 217-24 (2005). https://doi.org/10.1016/j.jallcom.2004.08.084 - C. Piconi and G. Maccauro, "Zirconia as a Ceramic Biomaterial," Biomaterials, 20 [1] 1-25 (1999). https://doi.org/10.1016/S0142-9612(98)00010-6
- J. Chevalier, L. Gremillard, and S. Deville, "Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants," Annu. Rev. Mater. Res., 37 1-32 (2007). https://doi.org/10.1146/annurev.matsci.37.052506.084250
- E. Camposilvan, F. Garcia Marro, A. Mestra, and M. Anglada, "Enhanced Reliability of Yttria-Stabilized Zirconia for Dental Applications," Acta Biomater., 17 36-46 (2015). https://doi.org/10.1016/j.actbio.2015.01.023
- M. Majic Renjo, L. Curkovic, S. Stefancic, and D. Coric, "Indentation Size Effect of Y-TZP Dental Ceramics," Dent. Mater., 30 [12] 371-76 (2014). https://doi.org/10.1016/j.dental.2014.08.367
- K. Harada, A. Shinya, D. Yokoyama, and A. Shinya, "Effect of Loading Conditions on the Fracture Toughness of Zirconia," J. Prosthodont. Res., 57 [2] 82-87 (2013). https://doi.org/10.1016/j.jpor.2013.01.005
- I. Sailer, J. Gottnerb, S. Kanelb, and C. H. Hammerle, "Randomized Controlled Clinical Trial of Zirconia-Ceramic and Metal-Ceramic Posterior Fixed Dental Prostheses: a 3-year Follow-Up," Int. J. Prosthodont., 22 [6] 553-60 (2009).
-
K. Kobayashi, H. Kuwajima, and T. Masaki, "Phase Change and Mechanical Properties of
$ZrO_2-Y2O_3$ Solid Electrolyte after Ageing," Solid State Ionics, 3-4 489-95 (1981). https://doi.org/10.1016/0167-2738(81)90138-7 - H. T. Kim, J. S. Han, J. H. Yang, J. B. Lee, and S. H. Kim, "The Effect of Low Temperature Aging on the Mechanical Property & Phase Stability of YTZP Ceramics," J. Adv. Prosthodont., 1 [3] 113-17 (2009). https://doi.org/10.4047/jap.2009.1.3.113
- G. K. R. Pereira, A. B. Venturini, T. Silvestri, K. S. Dapieve, A. F. Montagner, F. Z. M. Soares, and L. F. Valandro, "Lowtemperature Degradation of Y-TZP Ceramics: A Systematic Review and Meta-Analysis," J. Mech. Behav. Biomed. Mater., 55 151-63 (2015). https://doi.org/10.1016/j.jmbbm.2015.10.017
- S. W. Freimann, "Brittle Fracture Behavior of Ceramics," Am Ceram Soc. Bull., 67 [2] 392-402 (1988).
- R. F. Pabst, K. Kromp, and G. Popp, "Fracture Toughness-Measurement and Interpretation," Proc. Br. Ceram. Soc., 32 89-94 (1982).
- H. Fischer, A. Waindich, and R. Telle, "Influence of Preparation of Ceramic SEVNB Specimens on Fracture Toughness Testing Results," Dent. Mater., 24 618-22 (2008). https://doi.org/10.1016/j.dental.2007.06.021
- A. Kailer and S. Marc, "On the Feasibility of the Chevron Notch Beam Method to Measure Fracture Toughness of Fine-Grained Zirconia Ceramics," Dent. Mater., 32 [10] 1256-62 (2016). https://doi.org/10.1016/j.dental.2016.07.011
- G. A. Gogotsi, "Fracture Toughness of Ceramics and Ceramic Composites," Ceram. Int., 29 777-84 (2003). https://doi.org/10.1016/S0272-8842(02)00230-4
- I. L. Denry and J. A. Holloway, "Elastic Constants, Vickers Hardness, and Fracture Toughness of Fluorrichterite-Based Glass-Ceramics," Dent. Mater., 20 213-19 (2004). https://doi.org/10.1016/S0109-5641(03)00094-0
- M. A. Garrido, I. Giraldez, L. Ceballos, and J. Rodriguez, "On the Possibility of Estimating the Fracture Toughness of Enamel," Dent. Mater., 30 1224-33 (2014). https://doi.org/10.1016/j.dental.2014.08.364
- H. Fischer and R. Marx, "Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method," Dent. Mater., 18 12-19 (2002). https://doi.org/10.1016/S0109-5641(01)00005-7
- E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, "The Hardness and Modulus of Elasticity of Primary Molar Teeth: an Ultra-Microindentation Study," J. Dent., 28 589-94 (2000). https://doi.org/10.1016/S0300-5712(00)00043-9
- A. Sakar-Deliormanli and M. Guden, "Microhardness and Fracture Toughness of Dental Materials by Indentation Method," J. Biomed. Mater. Res., Part B, 76 [2] 257-64 (2006). https://doi.org/10.1002/jbm.b.30371
- J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, "Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues," J. Mech. Behav. Biomed. Mater., 2 [4] 384-95 (2009). https://doi.org/10.1016/j.jmbbm.2008.10.008
- L. P. Mullins, M. S. Bruzzi, and P. E. McHugh, "Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture," J. Biomech., 40 [14] 3285-88 (2007). https://doi.org/10.1016/j.jbiomech.2007.04.020
- A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, "Determination of Fracture Toughness Using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test," J. Adv. Ceram., 2 87-102 (2013). https://doi.org/10.1007/s40145-013-0047-z
- A. Samodurova, A. Kocjan, M. V. Swain, and T. Kosmac, "The Combined Effect of Alumina and Silica Co-Doping on the Ageing Resistance of 3Y-TZP Bioceramics," Acta Biomater., 11 477-87 (2015). https://doi.org/10.1016/j.actbio.2014.09.009
- European Standard DIN EN 1389:2003, Advanced Technical Ceramics, Ceramic Composites, Physical Properties-Determination of Density and Apparent Porosity (BSI 81.060.30 Publication, 1994; https://shop.bsigroup.com/en/ProductDetail/?pid=000000000000345631&_ga=2.10794420.1058334025.1539768367-258163731.1539768367).
- W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiment," J. Mater. Res., 7 [6] 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564
- G. Pharr, "Measurement of Mechanical Properties by Ultra-Low Load Indentation," Mater. Sci. Eng., A, 253 [1-2] 151-59 (1998). https://doi.org/10.1016/S0921-5093(98)00724-2
- H. D. Carlton, J. W. Elmer, D. C. Freeman, R. D. Schaeffer, O. Derkach, and G. F. Gallegos, "Laser Notching Ceramics for Reliable Fracture Toughness Testing," J. Eur. Ceram. Soc., 36 [1] 227-34 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.08.021
- J. Y. Pastor, "How to Measure the Real Fracture Toughness in Brittle Materials? Past, Present and Future Techniques"; in Proceeding of the International Conference on Experimental Mechanics (ICEM15). Porto, Portugal, 2012.
- T. Palacios and J. Y. Pastor, "Influence of the Notch Root Radius on the Fracture Toughness of Brittle Metals: Nanostructure Tungsten Alloy, a Case Study," Int. J. Refract. Met. Hard Mater., 52 44-9 (2015). https://doi.org/10.1016/j.ijrmhm.2015.05.012
-
J. Y. Pastor, J. LLorca, A. Martín, J. I. Pena, and P. B. Oliete, "Fracture Toughness and Strength of
$Al_2O_3-Y_3Al_5O_{12}\;and\;Al_2O_3-Y_3Al_5O_{12}-ZrO_2$ Directionally Solidified Eutectic Oxides up to 1900K," J. Eur. Ceram. Soc., 28 [12] 2345-51 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.01.006 - R. Damani, R. Gstrein, and R. Danzer, "Critical Notch-Root Radius Effect in SENB-S Fracture Toughness Testing," J. Eur. Ceram. Soc., 16 [7] 695-702 (1996). https://doi.org/10.1016/0955-2219(95)00197-2
- T. Nishida, Y. Hanaki, and G. Pezzotti, "Effect of Notch-Root Radius on the Fracture Toughness of a Fine-Grained Alumina," J. Am. Ceram. Soc., 77 [2] 606-8 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07038.x
- G. V. Guinea, J. Y. Pastor, J. Planas, and M. Elices, "Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam," Int. J. Fract., 89 [2] 103-16 (1998). https://doi.org/10.1023/A:1007498132504
- L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, "Improving the Durability of a Biomedical-Grade Zirconia Ceramic by the Addition of Silica," J. Am. Ceram. Soc., 85 [2] 401-7 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00103.x
- L. Gremillard, T. Epicier, J. Chevalier, and G. Fantozzi, "Microstructural Study of Silica-Doped Zirconia Ceramics," Acta Mater., 48 [18-19] 4647-52 (2000). https://doi.org/10.1016/S1359-6454(00)00252-4
-
K. Fan, J. Y. Pastor, J. Ruiz-Hervias, J. Gurauskis, and C. Baudin, "Determination of Mechanical Properties of
$Al_2O_3$ /Y-TZP Ceramic Composites: Influence of Testing Method and Residual Stresses," Ceram. Int., 42 [16] 18700-10 (2016). https://doi.org/10.1016/j.ceramint.2016.09.008 - ASTM C769-98, Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Young's Modulus, ASTM International, West Conshohocken, PA, 1998.
-
A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, "Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened
$Al_2O_3$ and SiC Armor," J. Mater. Sci. Technol., 31 [8] 773-83 (2015). https://doi.org/10.1016/j.jmst.2015.06.005 - S. Palmqvist, "The Work for the Formation of a Crack during Vickers Indentation as a Measure of the Toughness of Hard Metals," Arch. Eisenhuettenwes, 33 629-34 (1962).
- G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
- M. W. Barsoum, Fundamentals of Ceramics; pp. 368-69, Taylor & Francis Group, New York, 2003.
- J. D. Lin and J. G. Duh, "Fracture Toughness and Hardness of Ceria and Yttria-Doped Tetragonal Zirconia Ceramics," Mater. Chem. Phys., 78 [1] 253-61 (2002). https://doi.org/10.1016/S0254-0584(02)00327-9
-
K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, "Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown
$ErAlO_3$ Single Crystals," J. Mater. Sci. Technol., 16 [04] 405-10 (2000). -
M. Bhat, B. Kaur, R. Kumar, K. K. Bamzai, P. N. Kotru, B. M. Wanklyn, "Effect of Ion Irradiation on Dielectric and Mechanical Characteristics of
$ErAlO_3$ Single Crystals," Nucl. Instrum. Methods Phys. Res., Sect. B, 234 [4] 494-508 (2005). https://doi.org/10.1016/j.nimb.2005.01.119 - B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," J. Am. Ceram. Soc., 63 [9-10] 574-81 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
- G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007). https://doi.org/10.1111/j.1551-2916.2006.01482.x
- K. Niihara, "A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramic," J. Mater. Sci. Lett., 2 [5] 221-23 (1983). https://doi.org/10.1007/BF00725625
- H. R. Lawn and E. R. Fuller, "Equilibrium Penny-Like Cracks in Indentation Fracture," J. Mater. Sci., 10 [12] 2016-24 (1975). https://doi.org/10.1007/BF00557479
- A. G. Evans and T. R. Wilshaw, "Quasi-Static Solid Particle Damage in Brittle Solid-I. Observation Analysis and Implications," Acta Metall., 24 [10] 939-56 (1976). https://doi.org/10.1016/0001-6160(76)90042-0
- M. T. Laugier, New formula for indentation toughness in ceramics. J. Mater. Sci. Lett., 6 355-6 (1987). https://doi.org/10.1007/BF01729352
- A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," J. Am. Ceram. Soc., 59 [7-8] 371-72 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
- D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Cluar, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 [5] 1873-82 (1985). https://doi.org/10.1007/BF00555296
- A. G. Evans, Fracture Toughness: the Role of Indentation Techniques; ASTM Special Technical Publication, 1979.
- JIS R. 1607, "Testing methods for fracture toughness of high performance ceramics," Japanese Standard Association (1990).
- J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method," J. Mater. Sci. Lett., 1 [11] 493-95 (1982). https://doi.org/10.1007/BF00721938
- K. Niihara, R. Morena, and D. P. H. Hasselman, "Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett., 1 [1] 13-6 (1982). https://doi.org/10.1007/BF00724706
-
J. Xu, D. Tang, K. J. Lee, H. B. Lim, K.-S. Park, and W. Cho, "Comparison of Fracture Toughness Evaluating Methods in 3Y-TZP Ceramics Reinforced with
$Al_2O_3$ Particles," J. Ceram. Process. Res., 13 [6] 83-7 (2012). -
W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, Mechanical Properties of
$Al_2O_3/ZrO_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2 - M. Szutkowska, "Fracture Resistance Behavior of Alumina-Zirconia Composites," J. Mater. Process. Technol., 153 [1] 868-74 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.406
-
A. Moradkhani, H. Baharvandi, and M. M. M. Samani, "Mechanical Properties and Microstructure of
$B_4C$ -Nano-$TiB_2$ -Fe/Ni Composites under Different Sintering Temperatures," Mater. Sci. Eng. A, 665 141-53 (2016). https://doi.org/10.1016/j.msea.2016.04.034 -
H. Latifi, A. Moradkhani, H. Baharvandi, and J. Martikainen, "Fracture Toughness Determination and Microstructure Investigation of a
$B_4C-NanoTiB_2$ Composite with Various Volume Percent of Fe and Ni Additives," Mater. Des., 62 392-400 (2014). https://doi.org/10.1016/j.matdes.2014.05.039 - A. Moradkhani and H. Baharvandi, "Analyzing the Microstructures of W-ZrC Composites Fabricated through Reaction Sintering and Determining their Fracture Toughness Values by Using the SENB and VIF Methods," Eng. Fract. Mech., 189 501-13 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.038
-
A. Moradkhani and H. Baharvandi, "Effects of Additive Amount, Testing Method, Fabrication Process and Sintering Temperature on the Mechanical Properties of
$Al_2O_3$ /3Y-TZP Composites," Eng. Fract. Mech., 191 446-60 (2018). https://doi.org/10.1016/j.engfracmech.2017.12.033 -
A. Moradkhani and H. Baharvandi, "Mechanical Properties and Fracture Behavior of
$B_4C$ -Nano/Micro SiC Composites Produced by Pressureless Sintering," Int. J. Refract. Met. Hard Mater., 70 107-15 (2018). https://doi.org/10.1016/j.ijrmhm.2017.10.001 -
A. Moradkhani and H. Baharvandi, "Determining the Fracture Resistance of
$B_4C-NanoSiB_6$ Nanocomposite by Vickers Indentation Method and Exploring its Mechanical Properties," Int. J. Refract. Met. Hard Mater., 68 159-65 (2017). https://doi.org/10.1016/j.ijrmhm.2017.07.009
피인용 문헌
- Mechanical properties of SiC‐C‐B 4 C composites with different carbon additives produced by pressureless sintering vol.18, pp.3, 2021, https://doi.org/10.1111/ijac.13686