DOI QR코드

DOI QR Code

Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods

  • Moradkhani, Alireza (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University) ;
  • Baharvandi, Hamidreza (Faculty of Materials & Manufacturing Processes, Malek-Ashtar University of Technology) ;
  • Naserifar, Ali (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University)
  • 투고 : 2018.05.17
  • 심사 : 2018.08.17
  • 발행 : 2019.01.31

초록

The objective of this research is to analyze the fracture toughness of pure and silica co-doped yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) bioceramics containing 0.1 and 0.2 wt.% of alumina, and sintered at a temperature of $1500^{\circ}C$. Because of the relatively easy preparation of the test specimens and the high speed of testing, the Vickers indentation fracture (VIF) technique is more frequently used to evaluate the fracture toughness of biomaterials and hard biological tissues. The Young's modulus and hardness values were obtained by means of nanoindentation and indentation methods. The fracture toughness values of 3Y-TZP bioceramics were calculated and analyzed using 15 equations related to the VIF technique, and loadings of 49.03 and 196.13 N with a Vickers diamond. For validation, the results were compared with fracture toughness values obtained by the single-edge laser-notch beam (SELNB) method with an almost atomically sharp laser-machined initial notch.

키워드

참고문헌

  1. E. S. Elshazly, S. M. El-Hout, and M. El-Sayed Ali, "Yttria Tetragonal Zirconia Biomaterials: Kinetic Investigation," J. Mater. Sci. Technol., 27 [4] 332-37 (2011). https://doi.org/10.1016/S1005-0302(11)60070-4
  2. M. Guazzato, M. Albakry, S. P. Ringer, and M. V. Swain, "Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials: Part II. Zirconia- Based Dental Ceramics," Dent. Mater., 20 [5] 4449-56 (2004).
  3. K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, and J. Hojo, "Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering," J. Am. Ceram. Soc., 91 [6] 1888-97 (2008). https://doi.org/10.1111/j.1551-2916.2008.02350.x
  4. M. J. Park, S. K. Yang, and J. B. Kang, "Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP," J. Korean Ceram. Soc., 43 [10] 640-45 (2006). https://doi.org/10.4191/KCERS.2006.43.1.010
  5. S. K. Yang, K. M. Bae, B. R. Cho, and J. B. Kang, "Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia," J. Korean Ceram. Soc., 42 [6] 411-16 (2005). https://doi.org/10.4191/KCERS.2005.42.6.411
  6. H. Yilmaz, C. Aydin, and B. E. Gul, "Flexural Strength and Fracture Toughness of Dental Core Ceramics," J. Prosthet. Dent., 98 [2] 120-28 (2007). https://doi.org/10.1016/S0022-3913(07)60045-6
  7. I. Denry and J. R. Kelly, "State of the Art of Zirconia for Dental Applications," Dent. Mater., 24 [3] 299-307 (2008). https://doi.org/10.1016/j.dental.2007.05.007
  8. F. Egilmez, G. Ergun, I. Cekic-Nagas, P. K. Vallittu, and L. V. Lassila, "Factors Affecting the Mechanical Behavior of Y-TZP," J. Mech. Behave. Biomed. Mater., 37 78-87 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.013
  9. S. Tekeli, "Fracture Toughness ($K_{IC}$), Hardness, Sintering and Grain Growth Behavior of $8YSCZ/Al_2O_3$ Composites Produced by Colloidal Processing," J. Alloys Compd., 391 [1-2] 217-24 (2005). https://doi.org/10.1016/j.jallcom.2004.08.084
  10. C. Piconi and G. Maccauro, "Zirconia as a Ceramic Biomaterial," Biomaterials, 20 [1] 1-25 (1999). https://doi.org/10.1016/S0142-9612(98)00010-6
  11. J. Chevalier, L. Gremillard, and S. Deville, "Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants," Annu. Rev. Mater. Res., 37 1-32 (2007). https://doi.org/10.1146/annurev.matsci.37.052506.084250
  12. E. Camposilvan, F. Garcia Marro, A. Mestra, and M. Anglada, "Enhanced Reliability of Yttria-Stabilized Zirconia for Dental Applications," Acta Biomater., 17 36-46 (2015). https://doi.org/10.1016/j.actbio.2015.01.023
  13. M. Majic Renjo, L. Curkovic, S. Stefancic, and D. Coric, "Indentation Size Effect of Y-TZP Dental Ceramics," Dent. Mater., 30 [12] 371-76 (2014). https://doi.org/10.1016/j.dental.2014.08.367
  14. K. Harada, A. Shinya, D. Yokoyama, and A. Shinya, "Effect of Loading Conditions on the Fracture Toughness of Zirconia," J. Prosthodont. Res., 57 [2] 82-87 (2013). https://doi.org/10.1016/j.jpor.2013.01.005
  15. I. Sailer, J. Gottnerb, S. Kanelb, and C. H. Hammerle, "Randomized Controlled Clinical Trial of Zirconia-Ceramic and Metal-Ceramic Posterior Fixed Dental Prostheses: a 3-year Follow-Up," Int. J. Prosthodont., 22 [6] 553-60 (2009).
  16. K. Kobayashi, H. Kuwajima, and T. Masaki, "Phase Change and Mechanical Properties of $ZrO_2-Y2O_3$ Solid Electrolyte after Ageing," Solid State Ionics, 3-4 489-95 (1981). https://doi.org/10.1016/0167-2738(81)90138-7
  17. H. T. Kim, J. S. Han, J. H. Yang, J. B. Lee, and S. H. Kim, "The Effect of Low Temperature Aging on the Mechanical Property & Phase Stability of YTZP Ceramics," J. Adv. Prosthodont., 1 [3] 113-17 (2009). https://doi.org/10.4047/jap.2009.1.3.113
  18. G. K. R. Pereira, A. B. Venturini, T. Silvestri, K. S. Dapieve, A. F. Montagner, F. Z. M. Soares, and L. F. Valandro, "Lowtemperature Degradation of Y-TZP Ceramics: A Systematic Review and Meta-Analysis," J. Mech. Behav. Biomed. Mater., 55 151-63 (2015). https://doi.org/10.1016/j.jmbbm.2015.10.017
  19. S. W. Freimann, "Brittle Fracture Behavior of Ceramics," Am Ceram Soc. Bull., 67 [2] 392-402 (1988).
  20. R. F. Pabst, K. Kromp, and G. Popp, "Fracture Toughness-Measurement and Interpretation," Proc. Br. Ceram. Soc., 32 89-94 (1982).
  21. H. Fischer, A. Waindich, and R. Telle, "Influence of Preparation of Ceramic SEVNB Specimens on Fracture Toughness Testing Results," Dent. Mater., 24 618-22 (2008). https://doi.org/10.1016/j.dental.2007.06.021
  22. A. Kailer and S. Marc, "On the Feasibility of the Chevron Notch Beam Method to Measure Fracture Toughness of Fine-Grained Zirconia Ceramics," Dent. Mater., 32 [10] 1256-62 (2016). https://doi.org/10.1016/j.dental.2016.07.011
  23. G. A. Gogotsi, "Fracture Toughness of Ceramics and Ceramic Composites," Ceram. Int., 29 777-84 (2003). https://doi.org/10.1016/S0272-8842(02)00230-4
  24. I. L. Denry and J. A. Holloway, "Elastic Constants, Vickers Hardness, and Fracture Toughness of Fluorrichterite-Based Glass-Ceramics," Dent. Mater., 20 213-19 (2004). https://doi.org/10.1016/S0109-5641(03)00094-0
  25. M. A. Garrido, I. Giraldez, L. Ceballos, and J. Rodriguez, "On the Possibility of Estimating the Fracture Toughness of Enamel," Dent. Mater., 30 1224-33 (2014). https://doi.org/10.1016/j.dental.2014.08.364
  26. H. Fischer and R. Marx, "Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method," Dent. Mater., 18 12-19 (2002). https://doi.org/10.1016/S0109-5641(01)00005-7
  27. E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, "The Hardness and Modulus of Elasticity of Primary Molar Teeth: an Ultra-Microindentation Study," J. Dent., 28 589-94 (2000). https://doi.org/10.1016/S0300-5712(00)00043-9
  28. A. Sakar-Deliormanli and M. Guden, "Microhardness and Fracture Toughness of Dental Materials by Indentation Method," J. Biomed. Mater. Res., Part B, 76 [2] 257-64 (2006). https://doi.org/10.1002/jbm.b.30371
  29. J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, "Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues," J. Mech. Behav. Biomed. Mater., 2 [4] 384-95 (2009). https://doi.org/10.1016/j.jmbbm.2008.10.008
  30. L. P. Mullins, M. S. Bruzzi, and P. E. McHugh, "Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture," J. Biomech., 40 [14] 3285-88 (2007). https://doi.org/10.1016/j.jbiomech.2007.04.020
  31. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, "Determination of Fracture Toughness Using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test," J. Adv. Ceram., 2 87-102 (2013). https://doi.org/10.1007/s40145-013-0047-z
  32. A. Samodurova, A. Kocjan, M. V. Swain, and T. Kosmac, "The Combined Effect of Alumina and Silica Co-Doping on the Ageing Resistance of 3Y-TZP Bioceramics," Acta Biomater., 11 477-87 (2015). https://doi.org/10.1016/j.actbio.2014.09.009
  33. European Standard DIN EN 1389:2003, Advanced Technical Ceramics, Ceramic Composites, Physical Properties-Determination of Density and Apparent Porosity (BSI 81.060.30 Publication, 1994; https://shop.bsigroup.com/en/ProductDetail/?pid=000000000000345631&_ga=2.10794420.1058334025.1539768367-258163731.1539768367).
  34. W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiment," J. Mater. Res., 7 [6] 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564
  35. G. Pharr, "Measurement of Mechanical Properties by Ultra-Low Load Indentation," Mater. Sci. Eng., A, 253 [1-2] 151-59 (1998). https://doi.org/10.1016/S0921-5093(98)00724-2
  36. H. D. Carlton, J. W. Elmer, D. C. Freeman, R. D. Schaeffer, O. Derkach, and G. F. Gallegos, "Laser Notching Ceramics for Reliable Fracture Toughness Testing," J. Eur. Ceram. Soc., 36 [1] 227-34 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.08.021
  37. J. Y. Pastor, "How to Measure the Real Fracture Toughness in Brittle Materials? Past, Present and Future Techniques"; in Proceeding of the International Conference on Experimental Mechanics (ICEM15). Porto, Portugal, 2012.
  38. T. Palacios and J. Y. Pastor, "Influence of the Notch Root Radius on the Fracture Toughness of Brittle Metals: Nanostructure Tungsten Alloy, a Case Study," Int. J. Refract. Met. Hard Mater., 52 44-9 (2015). https://doi.org/10.1016/j.ijrmhm.2015.05.012
  39. J. Y. Pastor, J. LLorca, A. Martín, J. I. Pena, and P. B. Oliete, "Fracture Toughness and Strength of $Al_2O_3-Y_3Al_5O_{12}\;and\;Al_2O_3-Y_3Al_5O_{12}-ZrO_2$ Directionally Solidified Eutectic Oxides up to 1900K," J. Eur. Ceram. Soc., 28 [12] 2345-51 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.01.006
  40. R. Damani, R. Gstrein, and R. Danzer, "Critical Notch-Root Radius Effect in SENB-S Fracture Toughness Testing," J. Eur. Ceram. Soc., 16 [7] 695-702 (1996). https://doi.org/10.1016/0955-2219(95)00197-2
  41. T. Nishida, Y. Hanaki, and G. Pezzotti, "Effect of Notch-Root Radius on the Fracture Toughness of a Fine-Grained Alumina," J. Am. Ceram. Soc., 77 [2] 606-8 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07038.x
  42. G. V. Guinea, J. Y. Pastor, J. Planas, and M. Elices, "Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam," Int. J. Fract., 89 [2] 103-16 (1998). https://doi.org/10.1023/A:1007498132504
  43. L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, "Improving the Durability of a Biomedical-Grade Zirconia Ceramic by the Addition of Silica," J. Am. Ceram. Soc., 85 [2] 401-7 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00103.x
  44. L. Gremillard, T. Epicier, J. Chevalier, and G. Fantozzi, "Microstructural Study of Silica-Doped Zirconia Ceramics," Acta Mater., 48 [18-19] 4647-52 (2000). https://doi.org/10.1016/S1359-6454(00)00252-4
  45. K. Fan, J. Y. Pastor, J. Ruiz-Hervias, J. Gurauskis, and C. Baudin, "Determination of Mechanical Properties of $Al_2O_3$/Y-TZP Ceramic Composites: Influence of Testing Method and Residual Stresses," Ceram. Int., 42 [16] 18700-10 (2016). https://doi.org/10.1016/j.ceramint.2016.09.008
  46. ASTM C769-98, Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Young's Modulus, ASTM International, West Conshohocken, PA, 1998.
  47. A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, "Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened $Al_2O_3$ and SiC Armor," J. Mater. Sci. Technol., 31 [8] 773-83 (2015). https://doi.org/10.1016/j.jmst.2015.06.005
  48. S. Palmqvist, "The Work for the Formation of a Crack during Vickers Indentation as a Measure of the Toughness of Hard Metals," Arch. Eisenhuettenwes, 33 629-34 (1962).
  49. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  50. M. W. Barsoum, Fundamentals of Ceramics; pp. 368-69, Taylor & Francis Group, New York, 2003.
  51. J. D. Lin and J. G. Duh, "Fracture Toughness and Hardness of Ceria and Yttria-Doped Tetragonal Zirconia Ceramics," Mater. Chem. Phys., 78 [1] 253-61 (2002). https://doi.org/10.1016/S0254-0584(02)00327-9
  52. K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, "Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown $ErAlO_3$ Single Crystals," J. Mater. Sci. Technol., 16 [04] 405-10 (2000).
  53. M. Bhat, B. Kaur, R. Kumar, K. K. Bamzai, P. N. Kotru, B. M. Wanklyn, "Effect of Ion Irradiation on Dielectric and Mechanical Characteristics of $ErAlO_3$ Single Crystals," Nucl. Instrum. Methods Phys. Res., Sect. B, 234 [4] 494-508 (2005). https://doi.org/10.1016/j.nimb.2005.01.119
  54. B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," J. Am. Ceram. Soc., 63 [9-10] 574-81 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  55. G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007). https://doi.org/10.1111/j.1551-2916.2006.01482.x
  56. K. Niihara, "A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramic," J. Mater. Sci. Lett., 2 [5] 221-23 (1983). https://doi.org/10.1007/BF00725625
  57. H. R. Lawn and E. R. Fuller, "Equilibrium Penny-Like Cracks in Indentation Fracture," J. Mater. Sci., 10 [12] 2016-24 (1975). https://doi.org/10.1007/BF00557479
  58. A. G. Evans and T. R. Wilshaw, "Quasi-Static Solid Particle Damage in Brittle Solid-I. Observation Analysis and Implications," Acta Metall., 24 [10] 939-56 (1976). https://doi.org/10.1016/0001-6160(76)90042-0
  59. M. T. Laugier, New formula for indentation toughness in ceramics. J. Mater. Sci. Lett., 6 355-6 (1987). https://doi.org/10.1007/BF01729352
  60. A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," J. Am. Ceram. Soc., 59 [7-8] 371-72 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  61. D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Cluar, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 [5] 1873-82 (1985). https://doi.org/10.1007/BF00555296
  62. A. G. Evans, Fracture Toughness: the Role of Indentation Techniques; ASTM Special Technical Publication, 1979.
  63. JIS R. 1607, "Testing methods for fracture toughness of high performance ceramics," Japanese Standard Association (1990).
  64. J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method," J. Mater. Sci. Lett., 1 [11] 493-95 (1982). https://doi.org/10.1007/BF00721938
  65. K. Niihara, R. Morena, and D. P. H. Hasselman, "Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett., 1 [1] 13-6 (1982). https://doi.org/10.1007/BF00724706
  66. J. Xu, D. Tang, K. J. Lee, H. B. Lim, K.-S. Park, and W. Cho, "Comparison of Fracture Toughness Evaluating Methods in 3Y-TZP Ceramics Reinforced with $Al_2O_3$ Particles," J. Ceram. Process. Res., 13 [6] 83-7 (2012).
  67. W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, Mechanical Properties of $Al_2O_3/ZrO_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2
  68. M. Szutkowska, "Fracture Resistance Behavior of Alumina-Zirconia Composites," J. Mater. Process. Technol., 153 [1] 868-74 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.406
  69. A. Moradkhani, H. Baharvandi, and M. M. M. Samani, "Mechanical Properties and Microstructure of $B_4C$-Nano-$TiB_2$-Fe/Ni Composites under Different Sintering Temperatures," Mater. Sci. Eng. A, 665 141-53 (2016). https://doi.org/10.1016/j.msea.2016.04.034
  70. H. Latifi, A. Moradkhani, H. Baharvandi, and J. Martikainen, "Fracture Toughness Determination and Microstructure Investigation of a $B_4C-NanoTiB_2$ Composite with Various Volume Percent of Fe and Ni Additives," Mater. Des., 62 392-400 (2014). https://doi.org/10.1016/j.matdes.2014.05.039
  71. A. Moradkhani and H. Baharvandi, "Analyzing the Microstructures of W-ZrC Composites Fabricated through Reaction Sintering and Determining their Fracture Toughness Values by Using the SENB and VIF Methods," Eng. Fract. Mech., 189 501-13 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.038
  72. A. Moradkhani and H. Baharvandi, "Effects of Additive Amount, Testing Method, Fabrication Process and Sintering Temperature on the Mechanical Properties of $Al_2O_3$/3Y-TZP Composites," Eng. Fract. Mech., 191 446-60 (2018). https://doi.org/10.1016/j.engfracmech.2017.12.033
  73. A. Moradkhani and H. Baharvandi, "Mechanical Properties and Fracture Behavior of $B_4C$-Nano/Micro SiC Composites Produced by Pressureless Sintering," Int. J. Refract. Met. Hard Mater., 70 107-15 (2018). https://doi.org/10.1016/j.ijrmhm.2017.10.001
  74. A. Moradkhani and H. Baharvandi, "Determining the Fracture Resistance of $B_4C-NanoSiB_6$ Nanocomposite by Vickers Indentation Method and Exploring its Mechanical Properties," Int. J. Refract. Met. Hard Mater., 68 159-65 (2017). https://doi.org/10.1016/j.ijrmhm.2017.07.009

피인용 문헌

  1. Mechanical properties of SiC‐C‐B 4 C composites with different carbon additives produced by pressureless sintering vol.18, pp.3, 2021, https://doi.org/10.1111/ijac.13686