DOI QR코드

DOI QR Code

Analysis of Drought Risk in the Upper River Basins based on Trend Analysis Results

갈수기 경향성 분석을 활용한 상류 유역의 가뭄위험 변동성 분석

  • Jung, Il Won (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation) ;
  • Kim, Dong Yeong (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation) ;
  • Park, Jiyeon (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation)
  • Received : 2017.12.06
  • Accepted : 2018.10.16
  • Published : 2019.01.31

Abstract

This study analyzed the variability of drought risk based on trend analysis of dry-seasonal dam inflow located in upper river basins. To this, we used areal averaged precipitation and dam inflow of three upper river dams such as Soyang dam, Chungju dam, and Andong dam. We employed Mann-Kendall trend analysis and change point detection method to identify the significant trends and changing point in time series. Our results showed that significant decreasing trends (95% confidence interval) in dry-seasonal runoff rates (= dam inflow/precipitation) in three-dam basins. We investigated potential causes of decreasing runoff rates trends using changes in potential evapotranspiration (PET) and precipitation indices. However, there were no clear relation among changes in runoff rates, PET, and precipitation indices. Runoff rate reduction in the three dams may increase the risk of dam operational management and long-term water resource planning. Therefore, it will be necessary to perform a multilateral analysis to better understand decreasing runoff rates.

Keywords

NGHHCI_2019_v61n1_21_f0001.png 이미지

Fig. 1 Study area : Soyang Dam, Chungju Dam and Andong Dam

NGHHCI_2019_v61n1_21_f0002.png 이미지

Fig. 2 Accumulated annual precipitation and dam inflow during dry season (unit : mm)

NGHHCI_2019_v61n1_21_f0003.png 이미지

Fig. 3 Trends in six precipitation indices from 1973 to 2012(Inje station)

NGHHCI_2019_v61n1_21_f0004.png 이미지

Fig. 4 Dry seasonal potential evapotranspiration (PET) by calculating seventeen PET methods in Soyang dam basin

NGHHCI_2019_v61n1_21_f0005.png 이미지

Fig. 5 Changes in climatic variables in the Soyang dam basin (Inje station)

Table 1 Study period(years) of rainfall and dam inflow data

NGHHCI_2019_v61n1_21_t0001.png 이미지

Table 2 Classification of PET calculations based on the development philosophy

NGHHCI_2019_v61n1_21_t0002.png 이미지

Table 3 Results of trend analysis and change point detection analysis

NGHHCI_2019_v61n1_21_t0003.png 이미지

References

  1. Allen, R., L. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration Guidelines for computing crop water requirements. FAO Irrigation and Drainage 56: 300.
  2. Bae, D. H., I.W. Jung, and H. Chang, 2008. Long-term trend of precipitation and runoff in Korean river basins. Hydrological Processes 22(14): 2644-2656. doi:10.1002/hyp.6861.
  3. Briffa, K.R., G. van der Schrier, and P. D. Jones, 2009. Wet and dry summers in Europe since 1750: evidence of increasing drought. Int. J. Climatol. 29: 1894-1905. doi:10.1002/joc.1836.
  4. Chang, H., I. W. Jung, M. Steele, and M. Gannett. 2012. Spatial patterns of March and September streamflow trends in Pacific Northwest streams, 1958-2008. Geographical Analysis 44(3): 177-201. doi:10.1111/j.1538-4632.2012.00847.x.
  5. Chang, H., and I. W. Jung., 2010. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology 388(3-4): 186-207. doi:10.1016/j.jhydrol.2010.04.040.
  6. Choi, J. Y., 2014. Drought monitoring system and its improvement strategy in agricultural water, Water Policy Vision 2(1) (in Korean).
  7. Dai, A., K.E. Trenberth, and T. Qian, 2004. A global data set of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5: 1117-1130. doi:10.1175/JHM-386.1.
  8. Dixon, H., D.M. Lawler, and A.Y. Shamseldin, 2006. Streamflow trends in western Britain. Geophysical Research Letters 33(19): L19406. doi:10.1029/2006GL027325.
  9. Doorenbos, J. and W.O. Pruitt. 1977. Crop water requirements. FAO Irrigation and Drainage 24. Food and Agric. Organiz. of the U.N. Rome.
  10. Hamon, W. R., 1961. Estimating potential evaporation. in: Division, J.o.H. (Ed.), Proceedings of the American Society of Civil Engineers: 107-120.
  11. Hargreaves, G. H., and Z. A. Samani, 1982. Estimating potential evapotranspiration. Technical note. Journal of Irrigation and Drainage Engineering 108(3): 225-230.
  12. Hidalgo, H. G., T. Das, M.D. Dettinger, D.R. Cayan, D.W. Pierce, T.P. Barnett, G. Bala, A. Mirin, A.W. Wood, C. Bonfils, B.D. Santer, and T. Nozawa, 2009. Detection and attribution of streamflow timing changes to climate change in the Western United States. Journal of Climate 22: 3838-3855. doi:10.1175/2009JCLI2470.1.
  13. Hong, E. M., W.H. Nam, and J. Y. Choi, 2015. Climate change impacts on agricultural drought for major upland crops using soil moisture model - Focused on the Jeollanam-do. Journal of Korean Society of Agricultural Engineers 57(3): 65-76. doi:10.5389/KSAE.2015.57.3.065.
  14. Jensen, M. E., and H. R. Haise, 1963. Estimating evapotranspiration from solar radiation Journal of Irrigation and Drainage Division ASCE 89 (LR4): 15-41. https://doi.org/10.1061/JRCEA4.0000287
  15. Jung, I. W., 2015. Developing guidelines for supporting dry-seasonal dam operation based on improved predictability of seasonal dam-inflow prediction. APEC Climate Center (APCC) Research Report 2015-19: 19-36 (in Korean).
  16. Jung, I. W., D.H. Bae, and G. Kim, 2011. Recent trends of mean and extreme precipitation in Korea. International Journal of Climatology 31(3): 359-370. doi:10.1002/joc.2068.
  17. Kendall, M. G., 1975. Rank Correlation Methods. Charles Griffin: London.
  18. Lee, K. Y., 2017. Spring drought projection and countmeasures in agricultural water sector. 2017 Drought Response Symposium (in Korean).
  19. Linacre, E. T., 1977. A simple formula for estimating evaporation rates in various climate, using temperature data alone. Agricultural Meteorology 18: 409-424. doi:10.1016/0002-1571(77)90007-3.
  20. Lu, J., G. Sun, S.G. McNulty, and D. M. Amatya, 2005. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association 41(3): 621-633. doi:10.1111/j.1752-1688.2005.tb03759.x.
  21. Makkink, G. F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288.
  22. Mann, H. B., 1945. Nonparametric tests against trend. Econometrica 13: 245-259. doi:10.2307/1907187.
  23. McGuinness, J. L., and E. F. Bordne, 1972. A comparison of lysimeter derived potential evapotranspiration with computed values. Technical Bulletin 1452, Agricultural Research Service, US Department of Agriculture, Washington, DC.
  24. MOLIT(Ministry of Land, Infrastructure and Transport), 2014. Annual report on national groundwater (in Korean).
  25. MOLIT(Ministry of Land, Infrastructure and Transport). 2016. Study on developing drought preparedness and response framework (in Korean).
  26. Monteith, J. L., 1965. Evaporation and the environment, The state and movement of water in living organisms, XIXth symposium. Cambridge University Press, Swansea.
  27. Morton, F. I., 1983. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology 66 (1-4): 1-76. doi:10.1016/0022-1694(83)90177-4.
  28. Nam, W. H., M.J. Hayes, D.A. Wilhite, and M. D. Svoboda, 2015. Projection of temporal trends on drought characteristics using the standardized precipitation Evapotranspiration Index (SPEI) in South Korea. Journal of Korean Society of Agricultural Engineers 57(1): 37-45 (in Korean). doi:10.5389/KSAE.2015.57.1.037.
  29. Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andreassian, F. Anctil, and C. Loumagne, 2005. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part2-Toward a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology 303: 290-306. doi:10.1016/j.jhydrol.2004.08.026.
  30. Park N. Y., J.Y. Choi, S.H. Yoo, and S. H. Lee, 2013. Assessment of anti-drought capacity for agricultural reservoirs using RCP scenarios. Journal of Korean Society of Agricultural Engineers 55(3): 13-24 (in Korean). doi:10.5389/KSAE.2013.55.3.013.
  31. Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-145. doi:10.1098/rspa.1948.0037.
  32. Priestley, C. H. B., and R. J. Taylor, 1972. On the assessment of surface heat fluxes and evaporation using large-scale parameters. Monthly Weather Review 100: 81-92. doi:10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2.
  33. Romanenko, V. A., 1961. Computation of the Autumn Soil Moisture Using a Universal Relationship for a Large Area, Proceedings Ukrainian Hydrometeorological Research Institute, No. 3, Kiev.
  34. Seiller, G., and F. Anctil, 2014. Climate change impacts on the hydrologic regime of a Canadian river: comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrology and Earth System Sciences 18(6): 2033. doi:10.5194/hess-18-2033-2014.
  35. Sheffield, J., E. F. Wood, and M. L. Roderick, 2012. Little change in global drought over the past 60 years. Nature 491: 435-438. doi:10.1038/nature11575.
  36. Thom, A. S., and H. R. Oliver, 1977. On Penman's equation for estimating regional evaporation. Quarterly Journal of the Royal Metereological Society 103, 345-357. doi:10.1002/qj.49710343610.
  37. Turc, L., 1961. Evaluation des besions en eau d'irrigation, evapotranspiration potentielle, Annales Agronomiques 12: 13-49.
  38. Wright, J. L., 1982. New evapotranspiration crop coefficients. Journal of Irrigation and Drainage Engineering 108 (IR2): 57-74.
  39. Xu, C. Y., and V. P. Singh, 2002. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manage. 16(3): 197-219. https://doi.org/10.1023/A:1020282515975
  40. Yoo, S. H., J.Y. Choi, W.H. Nam, T. Kim, and G. D. Go, 2012. Developing model of drought climate scenarios for agricultural drought mitigation. Journal of Korean Society of Agricultural Engineers 54(2): 67-75 (in Korean). doi:10.5389/KSAE.2012.54.2.067.