Browse > Article
http://dx.doi.org/10.5389/KSAE.2019.61.1.021

Analysis of Drought Risk in the Upper River Basins based on Trend Analysis Results  

Jung, Il Won (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation)
Kim, Dong Yeong (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation)
Park, Jiyeon (Infrastructure Performance Institute, Korea Infrastructure Safety Corporation)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.61, no.1, 2019 , pp. 21-29 More about this Journal
Abstract
This study analyzed the variability of drought risk based on trend analysis of dry-seasonal dam inflow located in upper river basins. To this, we used areal averaged precipitation and dam inflow of three upper river dams such as Soyang dam, Chungju dam, and Andong dam. We employed Mann-Kendall trend analysis and change point detection method to identify the significant trends and changing point in time series. Our results showed that significant decreasing trends (95% confidence interval) in dry-seasonal runoff rates (= dam inflow/precipitation) in three-dam basins. We investigated potential causes of decreasing runoff rates trends using changes in potential evapotranspiration (PET) and precipitation indices. However, there were no clear relation among changes in runoff rates, PET, and precipitation indices. Runoff rate reduction in the three dams may increase the risk of dam operational management and long-term water resource planning. Therefore, it will be necessary to perform a multilateral analysis to better understand decreasing runoff rates.
Keywords
Dam inflow; drought; runoff rate; trend;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sheffield, J., E. F. Wood, and M. L. Roderick, 2012. Little change in global drought over the past 60 years. Nature 491: 435-438. doi:10.1038/nature11575.   DOI
2 Dai, A., K.E. Trenberth, and T. Qian, 2004. A global data set of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5: 1117-1130. doi:10.1175/JHM-386.1.   DOI
3 Dixon, H., D.M. Lawler, and A.Y. Shamseldin, 2006. Streamflow trends in western Britain. Geophysical Research Letters 33(19): L19406. doi:10.1029/2006GL027325.   DOI
4 Doorenbos, J. and W.O. Pruitt. 1977. Crop water requirements. FAO Irrigation and Drainage 24. Food and Agric. Organiz. of the U.N. Rome.
5 Hamon, W. R., 1961. Estimating potential evaporation. in: Division, J.o.H. (Ed.), Proceedings of the American Society of Civil Engineers: 107-120.
6 Hargreaves, G. H., and Z. A. Samani, 1982. Estimating potential evapotranspiration. Technical note. Journal of Irrigation and Drainage Engineering 108(3): 225-230.
7 Hidalgo, H. G., T. Das, M.D. Dettinger, D.R. Cayan, D.W. Pierce, T.P. Barnett, G. Bala, A. Mirin, A.W. Wood, C. Bonfils, B.D. Santer, and T. Nozawa, 2009. Detection and attribution of streamflow timing changes to climate change in the Western United States. Journal of Climate 22: 3838-3855. doi:10.1175/2009JCLI2470.1.   DOI
8 Hong, E. M., W.H. Nam, and J. Y. Choi, 2015. Climate change impacts on agricultural drought for major upland crops using soil moisture model - Focused on the Jeollanam-do. Journal of Korean Society of Agricultural Engineers 57(3): 65-76. doi:10.5389/KSAE.2015.57.3.065.   DOI
9 Jensen, M. E., and H. R. Haise, 1963. Estimating evapotranspiration from solar radiation Journal of Irrigation and Drainage Division ASCE 89 (LR4): 15-41.   DOI
10 Jung, I. W., 2015. Developing guidelines for supporting dry-seasonal dam operation based on improved predictability of seasonal dam-inflow prediction. APEC Climate Center (APCC) Research Report 2015-19: 19-36 (in Korean).
11 Linacre, E. T., 1977. A simple formula for estimating evaporation rates in various climate, using temperature data alone. Agricultural Meteorology 18: 409-424. doi:10.1016/0002-1571(77)90007-3.   DOI
12 Jung, I. W., D.H. Bae, and G. Kim, 2011. Recent trends of mean and extreme precipitation in Korea. International Journal of Climatology 31(3): 359-370. doi:10.1002/joc.2068.   DOI
13 Kendall, M. G., 1975. Rank Correlation Methods. Charles Griffin: London.
14 Lee, K. Y., 2017. Spring drought projection and countmeasures in agricultural water sector. 2017 Drought Response Symposium (in Korean).
15 McGuinness, J. L., and E. F. Bordne, 1972. A comparison of lysimeter derived potential evapotranspiration with computed values. Technical Bulletin 1452, Agricultural Research Service, US Department of Agriculture, Washington, DC.
16 Lu, J., G. Sun, S.G. McNulty, and D. M. Amatya, 2005. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association 41(3): 621-633. doi:10.1111/j.1752-1688.2005.tb03759.x.   DOI
17 Makkink, G. F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288.
18 Mann, H. B., 1945. Nonparametric tests against trend. Econometrica 13: 245-259. doi:10.2307/1907187.   DOI
19 MOLIT(Ministry of Land, Infrastructure and Transport), 2014. Annual report on national groundwater (in Korean).
20 MOLIT(Ministry of Land, Infrastructure and Transport). 2016. Study on developing drought preparedness and response framework (in Korean).
21 Monteith, J. L., 1965. Evaporation and the environment, The state and movement of water in living organisms, XIXth symposium. Cambridge University Press, Swansea.
22 Park N. Y., J.Y. Choi, S.H. Yoo, and S. H. Lee, 2013. Assessment of anti-drought capacity for agricultural reservoirs using RCP scenarios. Journal of Korean Society of Agricultural Engineers 55(3): 13-24 (in Korean). doi:10.5389/KSAE.2013.55.3.013.   DOI
23 Morton, F. I., 1983. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology 66 (1-4): 1-76. doi:10.1016/0022-1694(83)90177-4.   DOI
24 Nam, W. H., M.J. Hayes, D.A. Wilhite, and M. D. Svoboda, 2015. Projection of temporal trends on drought characteristics using the standardized precipitation Evapotranspiration Index (SPEI) in South Korea. Journal of Korean Society of Agricultural Engineers 57(1): 37-45 (in Korean). doi:10.5389/KSAE.2015.57.1.037.   DOI
25 Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andreassian, F. Anctil, and C. Loumagne, 2005. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part2-Toward a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology 303: 290-306. doi:10.1016/j.jhydrol.2004.08.026.   DOI
26 Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-145. doi:10.1098/rspa.1948.0037.
27 Priestley, C. H. B., and R. J. Taylor, 1972. On the assessment of surface heat fluxes and evaporation using large-scale parameters. Monthly Weather Review 100: 81-92. doi:10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2.   DOI
28 Romanenko, V. A., 1961. Computation of the Autumn Soil Moisture Using a Universal Relationship for a Large Area, Proceedings Ukrainian Hydrometeorological Research Institute, No. 3, Kiev.
29 Allen, R., L. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration Guidelines for computing crop water requirements. FAO Irrigation and Drainage 56: 300.
30 Seiller, G., and F. Anctil, 2014. Climate change impacts on the hydrologic regime of a Canadian river: comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrology and Earth System Sciences 18(6): 2033. doi:10.5194/hess-18-2033-2014.   DOI
31 Bae, D. H., I.W. Jung, and H. Chang, 2008. Long-term trend of precipitation and runoff in Korean river basins. Hydrological Processes 22(14): 2644-2656. doi:10.1002/hyp.6861.   DOI
32 Xu, C. Y., and V. P. Singh, 2002. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manage. 16(3): 197-219.   DOI
33 Thom, A. S., and H. R. Oliver, 1977. On Penman's equation for estimating regional evaporation. Quarterly Journal of the Royal Metereological Society 103, 345-357. doi:10.1002/qj.49710343610.   DOI
34 Turc, L., 1961. Evaluation des besions en eau d'irrigation, evapotranspiration potentielle, Annales Agronomiques 12: 13-49.
35 Wright, J. L., 1982. New evapotranspiration crop coefficients. Journal of Irrigation and Drainage Engineering 108 (IR2): 57-74.
36 Yoo, S. H., J.Y. Choi, W.H. Nam, T. Kim, and G. D. Go, 2012. Developing model of drought climate scenarios for agricultural drought mitigation. Journal of Korean Society of Agricultural Engineers 54(2): 67-75 (in Korean). doi:10.5389/KSAE.2012.54.2.067.   DOI
37 Choi, J. Y., 2014. Drought monitoring system and its improvement strategy in agricultural water, Water Policy Vision 2(1) (in Korean).
38 Briffa, K.R., G. van der Schrier, and P. D. Jones, 2009. Wet and dry summers in Europe since 1750: evidence of increasing drought. Int. J. Climatol. 29: 1894-1905. doi:10.1002/joc.1836.   DOI
39 Chang, H., I. W. Jung, M. Steele, and M. Gannett. 2012. Spatial patterns of March and September streamflow trends in Pacific Northwest streams, 1958-2008. Geographical Analysis 44(3): 177-201. doi:10.1111/j.1538-4632.2012.00847.x.   DOI
40 Chang, H., and I. W. Jung., 2010. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology 388(3-4): 186-207. doi:10.1016/j.jhydrol.2010.04.040.   DOI