DOI QR코드

DOI QR Code

Growth of α-Ga2O3 Epitaxial Films on Al2O3 by Halide Vapor Pressure Epitaxy

  • Lee, Daejang (UJL Inc.) ;
  • Cha, An-Na (School of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Junseong (School of Applied Chemical Engineering, Chonnam National University) ;
  • Noh, Hogyun (School of Applied Chemical Engineering, Chonnam National University) ;
  • Moon, Youngboo (UJL Inc.) ;
  • Ha, Jun-Seok (School of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2019.12.16
  • 심사 : 2019.12.28
  • 발행 : 2019.12.30

초록

In this study, we investigated the growth of single-crystallinity α-Ga2O3 thin films on c-plane sapphire substrates using halide vapor pressure epitaxy. We also found the optimal growth conditions to suppress the phase transition of α-Ga2O3. Our results confirmed that the growth temperature and partial pressure of the reactive gas greatly influenced the crystallinity. The optimal growth temperature range was about 460~510℃, and the α-Ga2O3 thin films with the highest crystallinity were obtained at a III/VI ratio of 4. The thickness and surface morphology of the thin films was observed by scanning electron microscopy. The film thickness was 6.938 ㎛, and the full width at half maximum of the ω-2θ scan rocking curve was as small as 178 arcsec. The optical band gap energy obtained was 5.21 eV, and the films were almost completely transparent in the near-ultraviolet and visible regions. The etch pit density was found to be as low as about 6.0 × 104 cm-2.

키워드

참고문헌

  1. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, "Ultrawide- Bandgap Semiconductors: Research Opportunities and Challenges", Adv. Electron. Mater. 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501
  2. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of $Ga_2O_3$ materials, processing, and devices", Appl. Phys. Rev., 5, 011301 (2018). https://doi.org/10.1063/1.5006941
  3. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent progress in $Ga_2O_3$ power devices", Semicond. Sci. Technol., 31, 34001 (2016). https://doi.org/10.1088/0268-1242/31/3/034001
  4. J.-H. Lee, D.-H. Jung, S.-J. Oh, and J.-P. Jung, "High Technology and Latest Trends of WBG Power Semiconductors", J. Microelectron. Packag. Soc., 25(4), 17 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.017
  5. K.-H. Kim, and S.-H. Choa, "Recent Overview on Power Semiconductor Devices and Package Module Technology", J. Microelectron. Packag. Soc. 26(3), 15 (2019).
  6. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide ($Ga_2O_3$) metal-semiconductor field-effect transistors on single-crystal ${\beta}$-$Ga_2O_3$ (010) substrates", Appl. Phys. Lett., 100, 013504 (2012). https://doi.org/10.1063/1.3674287
  7. K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, "Device-quality ${\beta}$-$Ga_2O_3$ epitaxial films fabricated by ozone molecular beam epitaxy", Appl. Phys. Express., 5, 035502 (2012). https://doi.org/10.1143/APEX.5.035502
  8. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode $Ga_2O_3$ metal-oxide-semiconductor fieldeffect transistors on ${\beta}$-$Ga_2O_3$ (010) substrates and temperature dependence of their device characteristics", Appl. Phys. Lett., 103, 123511 (2013). https://doi.org/10.1063/1.4821858
  9. R. Roy, V. G. Hill, and E. F. Osborn, "Polymorphism of $Ga_2O_3$ and the System $Ga_2O_3$-$H_2O$", J. Am. Chem. Soc., 74, 719 (1952). https://doi.org/10.1021/ja01123a039
  10. Y. Oshima, E.G. Víllora, and K. Shimamura, "Halide vapor phase epitaxy of twin-free ${\alpha}$- $Ga_2O_3$ on sapphire (0001) substrates", Appl. Phys. Express., 8, 055501 (2015). https://doi.org/10.7567/APEX.8.055501
  11. S. Fujita, and K. Kaneko, "Epitaxial growth of corundumstructured wide band gap III-oxide semiconductor thin films", J. Cryst. Growth., 401, 588 (2014). https://doi.org/10.1016/j.jcrysgro.2014.02.032
  12. J. J. Tietjen, and J. A. Amic, "The preparation and properties of vapor?deposited epitaxial GaAs1- x P x using arsine and phosphine", J. Electrochem. Soc., 113, 724 (1966). https://doi.org/10.1149/1.2424100
  13. Y. Oshima, E.G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, "Epitaxial growth of phase-pure ${\varepsilon}$-$Ga_2O_3$ by halide vapor phase epitaxy", J. Appl. Phys., 118, 085301 (2015). https://doi.org/10.1063/1.4929417
  14. R. Kumaran, T. Tiedje, S. E. Webster, S. Penson, and W. Li, "Epitaxial Nd-doped ${\alpha}-(Al_1-_xGa_x)_2O_3$ films on sapphire for solid-state waveguide lasers", Opt. Lett., 35, 3793 (2010). https://doi.org/10.1364/OL.35.003793
  15. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, "Sol-gel prepared thin films for ultraviolet photodetectors", Appl. Phys. Lett., 90 (2007) 031912. https://doi.org/10.1063/1.2432946
  16. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, "Evaluation of Misfit Relaxation in ${\alpha}$-$Ga_2O_3$ Epitaxial Growth on ${\alpha}$-$Ga_2O_3$ Substrate", Jpn. J. Appl. Phys., 51, 020201 (2012).
  17. F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Faurie, "Defect characterization in ZnO layers grown by plasmaenhanced molecular-beam epitaxy on (0001) sapphire substrates", Appl. Phys. Lett., 79, 194 (2001). https://doi.org/10.1063/1.1384907
  18. M.-G. Ju, X. Wang, W. Liang, Y. Zhao, and C. Li, "Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions", J. Materials Chem. A., 2, 17005 (2014). https://doi.org/10.1039/C4TA03193H
  19. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q.T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, and A. Kuramata, "Homoepitaxial growth of ${\beta}$-$Ga_2O_3$ layers by halide vapor phase epitaxy", Appl. Phys. Express., 8, 015503 (2014). https://doi.org/10.7567/APEX.8.015503
  20. T. Oshima, T. Okuno, and S. Fujita, "$Ga_2O_3$ thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors", Jpn. J. Appl. Phys., 46, 7217 (2007). https://doi.org/10.1143/JJAP.46.7217
  21. K. Akaiwa, and S. Fujita, "Electrical conductive corundumstructured ${\alpha}$-$Ga_2O_3$ thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition", Jpn. J. Appl. Phys., 51, 070203 (2012).