DOI QR코드

DOI QR Code

양절형 밀 생장에 대한 온도의 영향과 유전자 발현 양상

Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars

  • 허지혜 (건국대학교 식량자원과학과) ;
  • 성혜주 (건국대학교 식량자원과학과) ;
  • 양운호 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 정우석 (건국대학교 식량자원과학과)
  • Heo, Ji Hye (Department of Crop Science, Konkuk University) ;
  • Seong, Hye Ju (Department of Crop Science, Konkuk University) ;
  • Yang, Woon Ho (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jung, Woosuk (Department of Crop Science, Konkuk University)
  • 투고 : 2019.11.12
  • 심사 : 2019.12.06
  • 발행 : 2019.12.31

초록

국내에서 육성된 파성3으로 분류된 밀의 생장에 대한 고온의 영향을 알아보기 위해 분얼기부터 등숙기까지 일평균 17℃, 20℃, 23℃, 26℃ 온도 처리에 의해 나타나는 밀의 생육 특성과 유전자 발현양의 변이를 분석하였다. 1. 밀의 생산성과 밀접한 연관이 있는 유효분얼수, 건물중은 수안밀과 조은밀은 일평균 온도 23℃ 이상에서 감소하였고, 진품밀은 20℃ 이상에서 감소하였다. 2. 진품밀의 경우 온도 처리 50일 후 온도 조건에 따라 생육상이 뚜렷이 구분되었는데, 17℃에서 영양생장 단계를 보였고, 20℃ 이상에서 출수·개화 단계를 나타냈다. 3. 온도와 관련된 생리대사에 관여한다고 알려진 유전자 16개를 대상으로 RT-qPCR을 진행하여 온도 처리 50일 후 진품밀의 17℃와 23℃ 처리구에서 유전자 발현 수준의 차이를 확인해본 결과, 23℃ 처리구에서 발현이 증가한 유전자에는 HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, Histone H2A이 있고, 감소한 유전자에는 VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL이 있다. 4. 16개 유전자 중 MYB73, YUCCA2, HSP101, ERF1, VRNA1이 저온과 고온 조건 사이에서 유전자 발현양에 큰 차이를 보였다. 5. 온도에 의한 진품밀의 출수 표현형은 평균온도 17℃와 20℃ 사이에서 결정적으로 나타나는 것으로 보이며, 온도에 의한 생육상과 형태적 특성의 차이는 단일 유전자 발현이 아닌 고온 스트레스 반응과 관련된 여러 유전자의 복합적인 메커니즘에 의해 영향을 받을 것으로 생각된다.

We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We found that the growth of Jinpum was different from that of the alternative wheat cultivars, which were bred in Korea, at 50 days after treatment. While the Jinpum wheat grown at 17℃ showed vegetative stage growth, that grown in the 23℃ growth chamber entered the heading and flowering stage. The differences in the expression of 16 genes known to be involved in high-temperature responses were checked by using Jinpum wheat 50 days after two temperature treatments (17℃ and 23℃), which showed apparent differences in expression between the higher and lower temperatures during the growth phase. In the 23℃ treatment samples, the genes with increased expression were HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, and Histone H2A, while the genes with decreased expression were VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL, and MYB73. YUCCA2, HSP101, ERF1, and VRN-A1 showed a significant difference in gene expression between lower- and higher-temperature conditions. Overall, combining the means of the expression of various genes involved in thermosensing, vernalization, and abiotic stresses, it is possible to conclude that different sets of genes are involved in vernalization and summer depression of wheat under long term, high ambient temperature conditions.

키워드

참고문헌

  1. Ahn, H., K. Jo, D. Jeong, M. Pak, J. Hur, W. Jung, and S. Kim. 2019a. PropaNet: Time-varying condition-specific transcriptional network construction by network propagation. Front. Plant. Sci. 10 : 698. https://doi.org/10.3389/fpls.2019.00698
  2. Ahn, H., I. Jung, H. Chae, D. Kang, W. Jung, and S. Kim. 2019b. HTR gene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis. BMC Bioinformatics. 20(S16) : 588. https://doi.org/10.1186/s12859-019-3072-2
  3. Albihlal, W. S., I. Obomighie, T. Blein, R. Persad, I. Chernukhin, Crespi, M., and P. M. Mullineaux. 2018. Arabidopsis heat shock transcription factora1b regulates multiple developmental genes under benign and stress conditions. J. Exp. Bot. 69(11) : 2847-2862. https://doi.org/10.1093/jxb/ery142
  4. Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, and J. W. White, et al. 2014. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2) : 143-147. https://doi.org/10.1038/nclimate2470
  5. Blakeslee, J. J., T. Spatola Rossi, and V. Kriechbaumer. 2019. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 70(19) : 5041-5049. https://doi.org/10.1093/jxb/erz283
  6. Boden, S. A., M. Kavanova, E. J. Finnegan, and P. A. Wigge. 2013. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14(6) : R65. https://doi.org/10.1186/gb-2013-14-6-r65
  7. Campbell, J. L., N. Y. Klueva, H. Zheng, J. Nieto-Sotelo, T. H., Ho, and H. T. Nguyen. 2001. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta. 1517(2) : 270-277. https://doi.org/10.1016/S0167-4781(00)00292-X
  8. Cheng, M. C., P. M. Liao, W. W. Kuo, and T. P. Lin. 2013. The Arabidopsis ethylene response factor1 regulates abiotic stressresponsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162(3) : 1566-1582. https://doi.org/10.1104/pp.113.221911
  9. Deng, W., M. C. Casao, P. Wang, K. Sato, P. M. Hayes, E. J. Finnegan, and B. Trevaskis. 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6 : 5882. https://doi.org/10.1038/ncomms6882
  10. Diaz, A., M. Zikhali, A. S. Turner, P. Isaac, and D. A. Laurie. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PlosOne. 7(3) : e33234. https://doi.org/10.1371/journal.pone.0033234
  11. Dixon, L. E., I. Karsai, T. Kiss, N. M. Adamski, Z. Liu, Y. Ding, V. Allard, S. A. Boden, and S. Griffiths. 2019. Vernalization1 controls developmental responses of winter wheat under high ambient temperatures. Development. 146(3) : dev172684. https://doi.org/10.1242/dev.172684
  12. Duan, Y. H., J. Guo, K. Ding, S. J. Wang, H. Zhang, X. W. Dai, Y. Y. Chen, F. Govers, L. L. Huang, and Z. S. Kang. 2011. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 38(1) : 301-307. https://doi.org/10.1007/s11033-010-0108-0
  13. Ergun, N., S. Ozcubukcu, M. Kolukirik, and O. Temizkan. 2014. Effects of temperature-heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Acta Biol. Hung. 65(4) : 439-450. https://doi.org/10.1556/ABiol.65.2014.4.8
  14. Farooq, M., H. Bramley, J. A. Palta, and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences. 30(6) : 491-507. https://doi.org/10.1080/07352689.2011.615687
  15. Franklin, K. A., S. H. Lee, D. Patel, S. V. Kumar, A. K. Spartz, C. Gu, S. Ye, P. Yu, G. Breen, J. D. Cohen, P. A. Wigge, and W. M. Gray. 2011. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. U. S. A. 108(50) : 20231-20235. https://doi.org/10.1073/pnas.1110682108
  16. Gangappa, S. N., S. Berriri, and S. V. Kumar. 2017. PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Curr. Biol. 27(2) : 243-249. https://doi.org/10.1016/j.cub.2016.11.012
  17. Gimenez, M. J., F. Piston, and S. G. Atienza. 2011. Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta. 233(1) : 163-173. https://doi.org/10.1007/s00425-010-1290-y
  18. Giorno, F., M. Wolters-Arts, S. Grillo, K. D. Scharf, W. H. Vriezen, and C. Mariani. 2010. Developmental and heat stressregulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61(2) : 453-462. https://doi.org/10.1093/jxb/erp316
  19. Hasanuzzaman, M., K. Nahar, M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(5) : 9643-9684. https://doi.org/10.3390/ijms14059643
  20. Hutsch, B. W., D. Jahn, and S. Schubert. 2018. Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J. Agron. Crop Sci. 205(1) : 22-32. https://doi.org/10.1111/jac.12298
  21. Islam, M. R., B. Feng, T. Chen, L. Tao, and G. Fu. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61(5) : 255-264. https://doi.org/10.1007/s12374-017-0429-9
  22. Jeong, J., and G. Choi. 2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells. 35(5) : 371-380. https://doi.org/10.1007/s10059-013-0135-5
  23. Khalil, S. I., H. M. S. El-Bassiouny, R. A. Hassanein, and H. A. Mostafa. 2009. Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust. J. Basic & Appl. Sci. 3(3) : 1517-1526.
  24. Kumar, S. V., D. Lucyshyn, K. E. Jaeger, E. Alos, E. Alvey, N. P. Harberd, and P. A. Wigge. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 484(7393) : 242-245. https://doi.org/10.1038/nature10928
  25. Li, J., H. H. Xu, W. C. Liu, X. W. Zhang, and Y. T. Lu. 2015. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168(4) : 1777-1791. https://doi.org/10.1104/pp.15.00523
  26. Lim, C. J., K. A. Yang, J. K. Hong, J. S. Choi, D. J. Yun, J. C. Hong, W. S. Chung, S. Y. Lee, M. J. Cho, and C. O. Lim. 2006. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119(4) : 373-383. https://doi.org/10.1007/s10265-006-0285-z
  27. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ Method. Methods. 25(4) : 402-408. https://doi.org/10.1006/meth.2001.1262
  28. Matsukura, S., J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki, and K. Yamaguchi-Shinozaki. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. 2010. Mol. Genet. Genomics. 283(2) : 185-196. https://doi.org/10.1007/s00438-009-0506-y
  29. Nishizawa, A., Y. Yabuta, and S. Shigeoka. 2008. Galactinol and Raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3) : 1251-1263. https://doi.org/10.1104/pp.108.122465
  30. Ohama, N., H. Sato, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2017). Transcriptional regulatory network of plant heat stress. Trends Plant Sci. 22(1) : 53-65. https://doi.org/10.1016/j.tplants.2016.08.015
  31. Ozga, J. A., H. Kaur, R. P. Savada, and D. M. Reinecke. 2017. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J. Exp. Bot. 68(8) : 1885-1894.
  32. Paik, I., P. K. Kathare, J.-I. Kim, and E. Huq. 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant. 10(8) : 1035-1046. https://doi.org/10.1016/j.molp.2017.07.002
  33. Pearce, S., N. Kippes, A. Chen, J. M. Debernardi, and J. Dubcovsky. 2016. RNA-seq studies using wheat Phytochrome B and Phytochrome C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biology. 16 : 141. https://doi.org/10.1186/s12870-016-0831-3
  34. Pillet, J., A. Egert, P. Pieri, F. Lecourieux, C. Kappel, J. Charon, E. Gomes, F. Keller, S. Delrot, and D. Lecourieux. 2012. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol. 53(10) : 1776-1792. https://doi.org/10.1093/pcp/pcs121
  35. Sarkar, N. K., Y.-K. Kim, and A. Grover. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 10(1) : 393. https://doi.org/10.1186/1471-2164-10-393
  36. Schramm, F., J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich, E. Vierling, and P. Von Koskull-Doring. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53(2) : 264-274. https://doi.org/10.1111/j.1365-313X.2007.03334.x
  37. Shimosaka, E. and K. Ozawa. 2015. Overexpression of coldinducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breed. Sci. 65(5) : 363-371. https://doi.org/10.1270/jsbbs.65.363
  38. Shpiler, L. and A. Blum. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica. 51(3) : 257-263. https://doi.org/10.1007/BF00039727
  39. Thomason, K., M. A. Babar, J. E. Erickson, M. Mulvaney, C. Beecher, and G. MacDonald. 2018. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoSONE. 13(6) : e0197919. https://doi.org/10.1371/journal.pone.0197919
  40. Wang, X., L. Hou, Y. Lu, B. Wu, X. Gong, M. Liu, J. Wang, Q. Sun, E. Vierling, and S. Xu. 2018. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J. Exp. Bot. 69(22) : 5531-5545. https://doi.org/10.1093/jxb/ery303
  41. Xue, G. P., S. Sadat, J. Drenth, and C. L. McIntyre. 2014. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65(2) : 539-557. https://doi.org/10.1093/jxb/ert399
  42. Young, T. E., J. Ling, C. J. Geisler-Lee, R. L. Tanguay C. Caldwell, and D. R. Gallie. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol. 127(3) : 777-791. https://doi.org/10.1104/pp.010160
  43. Zhang, N., E., Vierling, and S. J. Tonsor. 2016. Adaptive divergence in transcriptome response to heat and acclimation in Arabidopsis thaliana plants from contrasting climates. Biorxiv. 044446.