Browse > Article
http://dx.doi.org/10.7740/kjcs.2019.64.4.384

Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars  

Heo, Ji Hye (Department of Crop Science, Konkuk University)
Seong, Hye Ju (Department of Crop Science, Konkuk University)
Yang, Woon Ho (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
Jung, Woosuk (Department of Crop Science, Konkuk University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.64, no.4, 2019 , pp. 384-394 More about this Journal
Abstract
We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We found that the growth of Jinpum was different from that of the alternative wheat cultivars, which were bred in Korea, at 50 days after treatment. While the Jinpum wheat grown at 17℃ showed vegetative stage growth, that grown in the 23℃ growth chamber entered the heading and flowering stage. The differences in the expression of 16 genes known to be involved in high-temperature responses were checked by using Jinpum wheat 50 days after two temperature treatments (17℃ and 23℃), which showed apparent differences in expression between the higher and lower temperatures during the growth phase. In the 23℃ treatment samples, the genes with increased expression were HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, and Histone H2A, while the genes with decreased expression were VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL, and MYB73. YUCCA2, HSP101, ERF1, and VRN-A1 showed a significant difference in gene expression between lower- and higher-temperature conditions. Overall, combining the means of the expression of various genes involved in thermosensing, vernalization, and abiotic stresses, it is possible to conclude that different sets of genes are involved in vernalization and summer depression of wheat under long term, high ambient temperature conditions.
Keywords
growth phase; high temperature; Jinpum wheat; Triticum aestivum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Duan, Y. H., J. Guo, K. Ding, S. J. Wang, H. Zhang, X. W. Dai, Y. Y. Chen, F. Govers, L. L. Huang, and Z. S. Kang. 2011. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 38(1) : 301-307.   DOI
2 Ergun, N., S. Ozcubukcu, M. Kolukirik, and O. Temizkan. 2014. Effects of temperature-heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Acta Biol. Hung. 65(4) : 439-450.   DOI
3 Farooq, M., H. Bramley, J. A. Palta, and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences. 30(6) : 491-507.   DOI
4 Franklin, K. A., S. H. Lee, D. Patel, S. V. Kumar, A. K. Spartz, C. Gu, S. Ye, P. Yu, G. Breen, J. D. Cohen, P. A. Wigge, and W. M. Gray. 2011. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. U. S. A. 108(50) : 20231-20235.   DOI
5 Gangappa, S. N., S. Berriri, and S. V. Kumar. 2017. PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Curr. Biol. 27(2) : 243-249.   DOI
6 Gimenez, M. J., F. Piston, and S. G. Atienza. 2011. Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta. 233(1) : 163-173.   DOI
7 Giorno, F., M. Wolters-Arts, S. Grillo, K. D. Scharf, W. H. Vriezen, and C. Mariani. 2010. Developmental and heat stressregulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61(2) : 453-462.   DOI
8 Hasanuzzaman, M., K. Nahar, M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(5) : 9643-9684.   DOI
9 Ahn, H., K. Jo, D. Jeong, M. Pak, J. Hur, W. Jung, and S. Kim. 2019a. PropaNet: Time-varying condition-specific transcriptional network construction by network propagation. Front. Plant. Sci. 10 : 698.   DOI
10 Ahn, H., I. Jung, H. Chae, D. Kang, W. Jung, and S. Kim. 2019b. HTR gene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis. BMC Bioinformatics. 20(S16) : 588.   DOI
11 Albihlal, W. S., I. Obomighie, T. Blein, R. Persad, I. Chernukhin, Crespi, M., and P. M. Mullineaux. 2018. Arabidopsis heat shock transcription factora1b regulates multiple developmental genes under benign and stress conditions. J. Exp. Bot. 69(11) : 2847-2862.   DOI
12 Khalil, S. I., H. M. S. El-Bassiouny, R. A. Hassanein, and H. A. Mostafa. 2009. Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust. J. Basic & Appl. Sci. 3(3) : 1517-1526.
13 Hutsch, B. W., D. Jahn, and S. Schubert. 2018. Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J. Agron. Crop Sci. 205(1) : 22-32.   DOI
14 Islam, M. R., B. Feng, T. Chen, L. Tao, and G. Fu. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61(5) : 255-264.   DOI
15 Jeong, J., and G. Choi. 2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells. 35(5) : 371-380.   DOI
16 Kumar, S. V., D. Lucyshyn, K. E. Jaeger, E. Alos, E. Alvey, N. P. Harberd, and P. A. Wigge. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 484(7393) : 242-245.   DOI
17 Li, J., H. H. Xu, W. C. Liu, X. W. Zhang, and Y. T. Lu. 2015. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168(4) : 1777-1791.   DOI
18 Lim, C. J., K. A. Yang, J. K. Hong, J. S. Choi, D. J. Yun, J. C. Hong, W. S. Chung, S. Y. Lee, M. J. Cho, and C. O. Lim. 2006. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119(4) : 373-383.   DOI
19 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ Method. Methods. 25(4) : 402-408.   DOI
20 Schramm, F., J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich, E. Vierling, and P. Von Koskull-Doring. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53(2) : 264-274.   DOI
21 Shimosaka, E. and K. Ozawa. 2015. Overexpression of coldinducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breed. Sci. 65(5) : 363-371.   DOI
22 Shpiler, L. and A. Blum. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica. 51(3) : 257-263.   DOI
23 Thomason, K., M. A. Babar, J. E. Erickson, M. Mulvaney, C. Beecher, and G. MacDonald. 2018. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoSONE. 13(6) : e0197919.   DOI
24 Zhang, N., E., Vierling, and S. J. Tonsor. 2016. Adaptive divergence in transcriptome response to heat and acclimation in Arabidopsis thaliana plants from contrasting climates. Biorxiv. 044446.
25 Wang, X., L. Hou, Y. Lu, B. Wu, X. Gong, M. Liu, J. Wang, Q. Sun, E. Vierling, and S. Xu. 2018. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J. Exp. Bot. 69(22) : 5531-5545.   DOI
26 Xue, G. P., S. Sadat, J. Drenth, and C. L. McIntyre. 2014. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65(2) : 539-557.   DOI
27 Young, T. E., J. Ling, C. J. Geisler-Lee, R. L. Tanguay C. Caldwell, and D. R. Gallie. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol. 127(3) : 777-791.   DOI
28 Ohama, N., H. Sato, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2017). Transcriptional regulatory network of plant heat stress. Trends Plant Sci. 22(1) : 53-65.   DOI
29 Matsukura, S., J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki, and K. Yamaguchi-Shinozaki. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. 2010. Mol. Genet. Genomics. 283(2) : 185-196.   DOI
30 Nishizawa, A., Y. Yabuta, and S. Shigeoka. 2008. Galactinol and Raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3) : 1251-1263.   DOI
31 Ozga, J. A., H. Kaur, R. P. Savada, and D. M. Reinecke. 2017. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J. Exp. Bot. 68(8) : 1885-1894.
32 Paik, I., P. K. Kathare, J.-I. Kim, and E. Huq. 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant. 10(8) : 1035-1046.   DOI
33 Pearce, S., N. Kippes, A. Chen, J. M. Debernardi, and J. Dubcovsky. 2016. RNA-seq studies using wheat Phytochrome B and Phytochrome C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biology. 16 : 141.   DOI
34 Pillet, J., A. Egert, P. Pieri, F. Lecourieux, C. Kappel, J. Charon, E. Gomes, F. Keller, S. Delrot, and D. Lecourieux. 2012. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol. 53(10) : 1776-1792.   DOI
35 Cheng, M. C., P. M. Liao, W. W. Kuo, and T. P. Lin. 2013. The Arabidopsis ethylene response factor1 regulates abiotic stressresponsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162(3) : 1566-1582.   DOI
36 Sarkar, N. K., Y.-K. Kim, and A. Grover. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 10(1) : 393.   DOI
37 Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, and J. W. White, et al. 2014. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2) : 143-147.   DOI
38 Blakeslee, J. J., T. Spatola Rossi, and V. Kriechbaumer. 2019. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 70(19) : 5041-5049.   DOI
39 Boden, S. A., M. Kavanova, E. J. Finnegan, and P. A. Wigge. 2013. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14(6) : R65.   DOI
40 Campbell, J. L., N. Y. Klueva, H. Zheng, J. Nieto-Sotelo, T. H., Ho, and H. T. Nguyen. 2001. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta. 1517(2) : 270-277.   DOI
41 Deng, W., M. C. Casao, P. Wang, K. Sato, P. M. Hayes, E. J. Finnegan, and B. Trevaskis. 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6 : 5882.   DOI
42 Diaz, A., M. Zikhali, A. S. Turner, P. Isaac, and D. A. Laurie. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PlosOne. 7(3) : e33234.   DOI
43 Dixon, L. E., I. Karsai, T. Kiss, N. M. Adamski, Z. Liu, Y. Ding, V. Allard, S. A. Boden, and S. Griffiths. 2019. Vernalization1 controls developmental responses of winter wheat under high ambient temperatures. Development. 146(3) : dev172684.   DOI