DOI QR코드

DOI QR Code

콩에 있어서 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 영향 평가

Effects of High Temperature on Soybean Physiology, Protein and Oil Content, and Yield

  • 이윤호 (국립식량과학원 작물재배생리과) ;
  • 상완규 (국립식량과학원 작물재배생리과) ;
  • 조정일 (국립식량과학원 작물재배생리과) ;
  • 서명철 (국립식량과학원 작물재배생리과)
  • Lee, Yun-Ho (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jung-Il (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop physiology and production, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2019.08.31
  • 심사 : 2019.10.27
  • 발행 : 2019.12.31

초록

본 연구는 자연 환경과 가장 유사한 온도구배 챔버에서 국내 최대 보급 품종인 대원콩, 풍산나물콩 및 대풍콩을 통해 재배기간 온도 상승에 따른 생물 계절, 수량구성요소, 단백질 및 지방함량 변화를 구명하고자 수행을 하였다. 2017년과 2018년 대원콩과 풍산나물콩은 aT+ 1에 비하여 aT+ 4에서 개화기가 지연하였다. 특히 2018년이 지연일수가 길었다. 반면 대풍콩은 일률적으로 개화를 하였다. 이러한 결과 등숙기간은 년차간과 온도구배간 약 3-9일이 지연이 되었다. 수량 구성요소에서는 2017년에 비하여 2018년이 감소 폭이 높았다. 특히 100립 중과 종실 수량이 감소하였다. 연차와 품종에 따라서 면적 당 협수의 감소는 대원콩과 대품콩이 각각 48.8%와 41.5%씩 감소를 하였다. 풍산나물콩은 14.7%가 감소를 하였다. 단백질과 지방함량은 연차, 품종 및 온도구배에 따라 고도의 유의성을 보였다. 특히 2018년이 2017년에 비하여 등숙기간 온도 상승으로 인해 단백질과 지방함량이 감소하였다. 그러나 대풍콩은 2017년에 비하여 2018년이 지방함량은 높았다. 본 연구에 알 수 있듯이 개화기에서 종실비대기사이의 온도 상승은 생물 계절을 지연과 협수와 100립 중이 감소하여 종실 수량 감소로 이어졌다. 또한 콩 종실의 주요 성분인 단백질과 지방함량을 감소시켰다. 따라서 향후 지구 온난화로 인한 수량 보다는 영양학적 측면도 연구가 진행되어야 할 것으로 판단된다.

A recent assessment by the Intergovernmental Panel on Climate Change projected that the global average surface temperature will increase by a value 1.5℃ from 2030 to 2052. In this study, we used a temperature gradient chamber that mimicked field conditions to evaluate the effect of increased air temperature on phenology, yield components, protein content, and oil content, to assess soybean growth. In 2017 and 2018, 'Deawonkong', 'Pungsannamulkong', and 'Deapungkong' cultivars were grown in three temperature gradient chambers. Four temperature treatment groups were established by dividing the rows along temperature regimes: ambient temperature + 1℃ (aT+1), ambient temperature + 2℃ (aT+2), ambient temperature + 3℃ (aT+3), ambient temperature + 4℃ (aT+4). Year, cultivar, and temperature treatments significantly affected yield components and seed yield. In 2017, the flowering stage of 'Deawon' and 'Pungsannamul' cultivars in the aT+4 group was delayed compared to the flowering stage of those in the aT+1 group. In 2018, the flowering stage of 'Deawon' and 'Pungsannamul' was delayed at all temperature gradients, owing to high temperature stress, whereas 'Deapung' was regularly flowering in 2017 and 2018. The duration of the grain filling period was six days shorter in 2018 than in 2017 because of high temperature stress. The total number of pods per ㎡ for 'Deawon' and 'Pungsannamul' was 48.8 and 41.5% lower in 2018 than in 2017, respectively, whereas 'Deapung' increased by 6.3%. The 100-seed weight of 'Deawon' and 'Deapung' was 29.2 and 32.1% lower, respectively. However, 'Pungsannamul' decreased by 14.7%. The protein and oil content was lower during the grain filling period in 2018 than in the same period in 2017 because of high temperature stress. In contrast, the oil content in 'Deapung' was higher in 2018 than in 2017. Our results showed that increased temperature during the grain filling period was significantly and negatively correlated with pod number, 100-seed weight, protein content, and oil content.

키워드

참고문헌

  1. Allen, L. H. Jr., L. Zhang, K. J. Boote, and B. A. Hauser. 2018. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, main stem node number, and pod number per plant. The Crop Journal. 6 : 148-161. https://doi.org/10.1016/j.cj.2017.10.005
  2. Bellaloui, N., Y. Hu, A. Mengistu, H. K. Abbas, M. A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral, 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas J. Plant Biol. 4 : 56-65.
  3. Choi, D. H., H. Y. Ban, B. S. Seo, K. Y. Lee, and B. W. Lee. 2016. Phenology and seed yield performance of determinate soybean cultivars grown at elevated temperatures in temperate region. Plos One. Journal Pone. 0165977.
  4. Djanaguiraman, M., P. V. V. Prasad, D. L. Boyle, and W. T. Schapaugh. 2013. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Crop Sci. 199 : 171-177. https://doi.org/10.1111/jac.12005
  5. Dornbos, D. L. and Mullen. R. E. 1991. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Can. J. Plant Sci. 71 : 373-383. https://doi.org/10.4141/cjps91-052
  6. Dornbos, D. L. and Mullen. R. E. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 69(3) : 228-301. https://doi.org/10.1007/BF02635891
  7. Egli, D. and Wardlaw, I. 1980. Temperature repose of seed growth characteristics of soybean. Agron. J. 72 : 560-564. https://doi.org/10.2134/agronj1980.00021962007200030036x
  8. Egli, D. B. and Bruening, W. 1992. Planting data and soybean yield: evaluation of environmental effects with a crop simulation model: SOYGRO. Agriculture and Forest Meteorology. 62 : 19-29. https://doi.org/10.1016/0168-1923(92)90003-M
  9. Egli, D. B., D. M. Tukrony, J. J. Heitholt, and J. Rupe. 2005. Air temperate during seed filling and soybean seed germination and vigor. Crop Sci. 45 : 1329-1335. https://doi.org/10.2135/cropsci2004.0029
  10. Ergo, V. V., R. C. R. C. Lascano, R. Vega, and C. S. Parola. 2018. Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 148 : 1-11. https://doi.org/10.1016/j.envexpbot.2017.12.023
  11. Fehr, W. R. and C. E. Caviness. 1997. Stages of soybean development. Iowa State University of Science and Technology Special Report 80.
  12. Fred, S. and C. E. Watts. 1993. Dumas method for organic nitrogen. Ind. Eng. Chem. Anal. Ed. 11(6) : 333-334. https://doi.org/10.1021/ac50134a013
  13. Garner, W. W. and H. A. Allard. 1930. Photoperiodic response of soybean in relation to temperature and other environmental factors. J. Agr. Research. 41(10) : 719-735.
  14. Gibson, L. R. and R. E. Mullen. 1996a. Influence of day and night temperature on soybean seed yield. Crop Sci. 36 : 98-104. https://doi.org/10.2135/cropsci1996.0011183X003600010018x
  15. Gibson, L. R. and R. E. Mullen. 1996b. Soybean seed composition under high day and night growth temperatures. J. Am. Oil Chem. Soc. 73(6) : 733-737. https://doi.org/10.1007/BF02517949
  16. Ha, B. K. 2019. Soybean Industrial Information. 2 : 1-14.
  17. Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(3) : 9643-9684. https://doi.org/10.3390/ijms14059643
  18. Hesketh, J. D., D. L. Myhre, and C. R. Willey. 1973. Temperature control of time intervals between vegetative and reproductive events in soybeans. Crop Sci. 13(2) : 250-254. https://doi.org/10.2135/cropsci1973.0011183X001300020030x
  19. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H. Y. Kim. 1995. Temperature gradient chambers for resech on global environment change 3 A system designed for rice in Kyoto, Japan. Plant Cell Env. 18 :1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  20. IPCC. 2018. Global warming of $1.5^{\circ}C$. Summary for policymakers. Contribution of Working Group I to the Fourth Eight Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland.
  21. Larkindale, J., D. J. Hall, M. R. Knighth, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermos tolerance. Plant Physiol. 138 : 882-897. https://doi.org/10.1104/pp.105.062257
  22. Matsuda, H., Y. Shibata, M. Shizuka, and H. Fujii. 2011. Effect of temperature during the ripening period on the 100-grain weight of soybean in shonai district of Yamagata prefecture. Japan. J. Crop. Sci. 80 : 43-48. https://doi.org/10.1626/jcs.80.43
  23. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005 The effect of temperature during the reproductive period on development of reproductive organs the occurrence of delayed stem senescence in soybean. Jan. J. Crop Sci. 74 : 339-343. https://doi.org/10.1626/jcs.74.339
  24. Mourtzinis. S., A. P. Gaspar, S. L. Naeve, and S. P. Conley. 2017. Planting data, maturity, and temperature effects on soybean seed yield and composition. Crop Ecology and Physiology. 109 : 2040-2049.
  25. Oh-E, I., R. Uwagoh, S. Jyo, T. Kurahashi, K. Saitoh, and T. Kuroda. 2007. Effect of rising temperature on flowering, pod set, dry-matter production and yield in soybean. Jan. J. Crop Sci. 76 : 433-444. https://doi.org/10.1626/jcs.76.433
  26. Piper, E. L. and K. J Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 76(10) : 1233-1241. https://doi.org/10.1007/s11746-999-0099-y
  27. Poeta, F., L. Borra, and J. L. Rotundo. 2016. Variation in seed protein concentration and seed size affects soybean crop growth and development. Crop Sci. 56 : 1-13. https://doi.org/10.2135/cropsci2014.11.0789
  28. Puteh, A. B., M. ThuZar, M. M. A. Mondal, N. A. P. B. Abdullah, and M. R. A. Halim. 2013. Soybean [Glycine max(L). Merrill] seed yield response to high temperature stress during reproductive growth stages. Australian J. Crop Sci. 10 : 1472-1479.
  29. Rotundo, J. L. and M. E. Westgate. 2009. Meta-analysis of environmental effects on soybean seed composition. Field Crop Res. 110 : 147-156. https://doi.org/10.1016/j.fcr.2008.07.012
  30. Rotundo, J. L., L. Borras, M. E. Westgate, and J. H. Frf. 2009. Relationship between assimilate supply per seed during seed filling and soybean seed composition. Field Crop Res. 112 : 90-96. https://doi.org/10.1016/j.fcr.2009.02.004
  31. Sato, K. and T. Ikeda.1979. The growth responses of soybean plant to photoperiod and temperature. The effect of temperature during the ripening period on the yield and characters of seeds. Jan. J. Crop Sci. 48 : 283-290. https://doi.org/10.1626/jcs.48.283
  32. Sage, T. L., S. Agha, V. L. Nielson, H. A. Branch, S. Sultmanis, and R. F. Sage. 2015. The effect of high temperature stress on male and female reproduction in plants. Field Crop Res. 182 : 30-42. https://doi.org/10.1016/j.fcr.2015.06.011
  33. Sita, K., A. Sehal, B. HanumanthaRao, R. M. Nair, P. V. V. Prasad, S. Kumar, P. M. Gaur, M. Farooq, K. H. M. Siddque, R. K. Varshney, and H. Nayar. 2017. Food legumes and rising temperatures: Effects, adaptive function mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Plant Sci. 8 : 1658.
  34. Song, W., R. Yang, T. Wu, C. Wu, S. Sun, S. Zhang, B. Jiang, S. Tian, X. Liu, and T. Han. 2016. Analyzing the effects of climate factor on soybean protein oil contents, and composition by extensive and high-density sampling in China. J. Agr. Food Chem. 64 : 4121-4130. https://doi.org/10.1021/acs.jafc.6b00008
  35. Tacarindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima. 2012. The response of soybean seed growth characteristics to increase temperature under near-field conditions in temperature gradient chamber. Field Crop Res. 131 : 26-31. https://doi.org/10.1016/j.fcr.2012.02.006
  36. Tacrindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop Res. 154 : 74-81. https://doi.org/10.1016/j.fcr.2013.07.021
  37. Thomas, J. M. G., K. J. Boote, D. Pan, and L. H. Allen. 2010. Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. J. Agri Crop Sci. 1 : 19-32.
  38. Thomas, J. M. G., K. J. Boote, L. H. Allen, J. M. Gallo-Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Journal of Agro Crop Sci. 43 : 1548-1577. https://doi.org/10.2135/cropsci2003.1548
  39. Thuzar, M., A. B. Puteh, N. A. P. Abdullah, M. B. M. Lassim, and K. Jusoff. 2010. The effects of temperature stress on the quality and yield soybean [Glycine mx (L.) Merrill]. J. Agricultural Sci. 2 : 172-179.
  40. Uchikawa, O., Y. Fukushima, and Y. Matusue. 2003. Statistical analysis of soybean yield and meteorological condition in Northern Kyush. Jpn. J. Crop Sci. 72 : 203-209. https://doi.org/10.1626/jcs.72.203
  41. Wheeler, T. and J. V. Braun. 2013. Climate change impact on global food security. Science. 341 : 508-513. https://doi.org/10.1126/science.1239402
  42. Wilson, R. F., W. J. W. Burton, J. A. Buck, and C. A. Brim. 1978. Studies on Genetic Male-Sterile Soybeans. I. Distribution of Plant Carbohydrate and Nitrogen during Development. Plant Physiol. 61 : 838-841. https://doi.org/10.1104/pp.61.5.838
  43. Xu, G., S. Singh, J. Barnaby, J. Buyer, V. Reddy, and R. Sicher. 2016. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stage of development. Plant Physiol. Bioch. 108 : 313-322. https://doi.org/10.1016/j.plaphy.2016.07.025
  44. Yamori, W., K. Noguchi, and I. Terashimal. 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependence of photosynthetic partial reactions. Plant Cell Environ. 28 : 536-547. https://doi.org/10.1111/j.1365-3040.2004.01299.x
  45. Yazdi, S. B., R. W. Rinne, and R. D. Seif. 1977. Components of developing soybean seeds: oil, protein, sugars, organic acids and amino acids. Agron. J. 69 : 481-486. https://doi.org/10.2134/agronj1977.00021962006900030037x
  46. Zheng, H., L. Chen, and X. Han. 2009. Response of soybean yield to daytime temperature change during seed filling: along-term filed study in northeast China. Plant Prod. Sci. 12 : 526-532. https://doi.org/10.1626/pps.12.526
  47. Zheng, S. H., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5 : 215-218. https://doi.org/10.1626/pps.5.215