DOI QR코드

DOI QR Code

A Study on Initial Wave Breaker by Using MPS and Stereo Vision Technology

입자법과 스테레오 비전을 활용한 초기 쇄파 장치 연구

  • Kim, Kyung Sung (School of Naval Architecture and Ocean Engineering, Tongmyong University) ;
  • Yu, Sunjin (School of Digital-Media Engineering, Tongmyong University)
  • 김경성 (동명대학교 조선해양공학부) ;
  • 유선진 (동명대학교 디지털미디어공학부)
  • Received : 2018.12.26
  • Accepted : 2019.02.20
  • Published : 2019.02.28

Abstract

The flooding and overtopping due to unexpected large ocean wave may occur serious problems to environments and structures. Generally fixed wave breakers and several structures were installed to prevent such damages, however, they may affect to environments and charted path of ships badly. In this regard, new type of initial wave breaker was investigated in both of experimentally and numerically. For the experiments, conceptual devices were built by authors with stereo vision system. The moving particle semi-implicit method was adopted for simulation. It is revealed that the initial wave breaker reduce the damages from ocean waves by energy dissipated earlier. Furthermore, the effects of position of the initial wave breaker was also considered.

해안 영역에서의 해수의 범람은 재산 및 인명피해를 야기한다. 이러한 피해를 최소화 하고자 방파시설을 설치하지만, 고정식 방파시설의 경우, 변화하는 해상상태에 대응할 수 없으며, 과도한 설정에 의한 설치는 환경적 피해를 일으킨다. 본 연구에서는 환경적 피해를 줄이고 선박의 항행에 지장이 없는 가변식 초기 쇄파 장치에 대한 연구를 실험적 방법과 입자법을 이용한 수치 해석적 방법으로 연구하였다. 초기 쇄파 장치의 유무에 따라 해안절벽으로 넘어오는 파의 범람은 큰 차이가 있었으며, 이는 실험과 수치 해석 모두 확인되었다. 또한 초기 쇄파 장치의 위치에 따른 영향 역시 고려되었으며, 위치 역시 중요한 요소임이 확인되었다.

Keywords

OHHGBW_2019_v10n2_201_f0001.png 이미지

Fig. 1. Schematic model of initial wave breaker

OHHGBW_2019_v10n2_201_f0002.png 이미지

Fig. 2. Experimental Device

OHHGBW_2019_v10n2_201_f0003.png 이미지

Fig. 3. Examples of initial wave breaker test

OHHGBW_2019_v10n2_201_f0004.png 이미지

Fig. 4. Results from Simulation for No initial pre-wave breaker, front located pre-wave breaker, and rare positioned pre-wave breaker

OHHGBW_2019_v10n2_201_f0005.png 이미지

Fig. 5. Pressure time history at costal lines for each case

OHHGBW_2019_v10n2_201_f0006.png 이미지

Fig. 6. Amount of overtopped particles at coastal line for each case

Table 1. Result of buoy movement from stereo vision system

OHHGBW_2019_v10n2_201_t0001.png 이미지

Table 2. Amount of overtopped waves (Depth[mm])

OHHGBW_2019_v10n2_201_t0002.png 이미지

References

  1. Postacchini, M. Othman, I.K. Brocchini, M. & Baldock, T.E. (2014). Sediment transport and morphodynamics generated by a dam-break swash uprush: Coupled vs. uncoupled modelling. Coastal Engineering 89, 99-105. https://doi.org/10.1016/j.coastaleng.2014.04.003
  2. Brocchini, M. & Peregrine, D.H. (2001). The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. Journal of Fluid Mechanics, 449, 255-290. https://doi.org/10.1017/S0022112001006024
  3. Amicarelli, A. Albano, R. Mirauda, D. Agate, G. Sole, A. & Guandalini, R. A. (2015). smoothed particle hydrodynamics model 3D solid body transport in free surface flows. Computational Fluids 116, 205-228. https://doi.org/10.1016/j.compfluid.2015.04.018
  4. Monaghan, J.J. (1988), An Introduction to SPH, Computer Physics Communications, 48, 89-99. https://doi.org/10.1016/0010-4655(88)90026-4
  5. K. S. Kim. (2018). A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break. Applied Sciences, 8, 1070 DOI : 10.3390/app8071070
  6. Y. W. Nam & Y. H. Kim. (2015) Speed estimation of sound-emitted objects through convergence of sound information analysis and smart device technology. Korean Convergence Society, 6(5), 233-240. https://doi.org/10.15207/JKCS.2015.6.5.233
  7. S. H. Oh. (2015) A Fuzzy Linear Programming Problem with Fuzzy Convergent Equality Constraints. Korean Convergence Society, 6(5), 227-232. https://doi.org/10.15207/JKCS.2015.6.5.227
  8. J. H. Yang, Y. S. Park & S. H. Lee. (2017) Text extraction in iamges using simplify color and edges pattern analysis, Korean Convergence Society, 8(8), 33-40.
  9. J. H. Yun, M. R. Choi, & S. S. Lee. (2017) Multi-camera image feature analysis for virtual space convergence, Korean Convergence Society, 8(8), 19-28.
  10. Koshizuka, S. & Oka, Y. (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sciences Engingeering 123, 421-434. https://doi.org/10.13182/NSE96-A24205
  11. Tanaka, M. & Masunaga, T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility. Journal of Computational Physiscs 229. 4279-4290. https://doi.org/10.1016/j.jcp.2010.02.011
  12. B. H. Lee, J. C. Park, M. H. Kim & S. C. Hwang. (2001). Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods Application in Mechanical Engineering, 200, 1113-1125.
  13. K. S. Kim, M. H. Kim. & J. C. Park. (2014). Development of moving particle simulation method for multiliquid-layer sloshing. Mathematical Problems in Engineering 2014, 350165.
  14. R. I Hartley & A. Zisserman. (2004). Multiple View Geometry in Computer Vision, Cambridge University Press.
  15. S. H. Park, S. J. Yu, J. R. Kim, S. J. Kim & S. H. Lee. (2012). 3D hand tracking using Kalman filter in depth space, EURASIP J. Adv. Signal Process. 36.