• Title/Summary/Keyword: Radar Exposure

Search Result 15, Processing Time 0.032 seconds

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude (고고도에서의 피탐성 최소화 유도탄 최적자세 연구)

  • Moon, Kyujin;Jeong, Ui-Taek;Kim, JeongHun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.865-873
    • /
    • 2019
  • To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.

Evaluation of Applicability of Circuit-analog Radar Absorbing Structures for High Temperature in 350℃ and Hot-wet Environment (고온용 Circuit-analog 전파흡수구조의 350℃ 및 열 수분 환경에서의 적용성 평가)

  • Min-Su Jang;Ho-Beom Kim;Heon-Suk Hong
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2023
  • We proposed a high-temperature circuit-analog radar absorbing structures (CA-RAS), and evaluated radar absorption performance and tensile properties in 350℃ and a hot-wet environment. The CA-RAS was implemented with a glass/cyanate ester composites and a square resistive pattern layer, and reflection loss was measured by 350℃ and after exposure of hot-wet condition using free space measurement. And the tensile strength at 350℃ and after exposure of hot-wet condition was measured according to the ASTM D638. The proposed CA-RAS showed a 4 GHz of -dB bandwidth and -20 dB of a peak value at 350℃. In addition, there was no deterioration in absorption performance after exposure to a hot-wet condition. The tensile strength value of more than 95% compared to the strength of the glass/cyanate ester composite was confirmed at 350℃ and after exposure of hot-wet condition. Through this, the applicability of CA-RAS proposed in this study was confirmed as a load bearing structure for stealth weapon exposed to high temperature and hot-wet environment.

Observed tropical cyclone wind flow characteristics

  • Schroeder, John L.;Edwards, Becca P.;Giammanco, Ian M.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.349-381
    • /
    • 2009
  • Since 1998, several institutions have deployed mobile instrumented towers to collect research-grade meteorological data from landfalling tropical cyclones. This study examines the wind flow characteristics from seven landfalling tropical cyclones using data collected from eight individual mobile tower deployments which occurred from 1998-2005. Gust factor, turbulence intensity, and integral scale statistics are inspected relative to changing surface roughness, mean wind speed and storm-relative position. Radar data, acquired from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) network, are examined to explore potential relationships with respect to radar reflectivity and precipitation structure (convective versus stratiform). The results indicate tropical cyclone wind flow characteristics are strongly influenced by the surrounding surface roughness (i.e., exposure) at each observation site, but some secondary storm dependencies are also documented.

Development of an Automatic Unmanned Target Object Carrying System for ASV Sensor Evaluation Methods (ASV용 센서통합평가 기술을 위한 무인 타겟 이동 시스템의 개발)

  • Kim, Eunjeong;Song, Insung;Yu, Sybok;Kim, Byungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.32-36
    • /
    • 2012
  • The Automatic unmanned target object carrying system (AUTOCS) is developed for testing road vehicle radar and vision sensor. It is important for the target to reflect the realistic target characteristics when developing ASV or ADAS products. The AUTOCS is developed to move the pedestrian or motorcycle target for desired speed and position. The AUTOCS is designed that only payload target which is a manikin or a motorcycle is detected by the sensor not the AUTOCS itself. In order for the AUTOCS to have low exposure to radar, the AUTOCS is stealthy shaped to have low RCS(Radar Cross Section). For deceiving vision sensor, the AUTOCS has a specially designed pattern on outside skin which resembles the asphalt pattern. The AUTOCS has three driving modes which are remote control, path following and replay. The AUTOCS V.1 is tested to verify the radar detect characteristics, and the AUTOCS successfully demonstrated that it is not detected by a car radar. The result is presented in this paper.

Vibration Response Analysis of the Military Vehicle by Road Test (군용차량 주행 진동응답 분석)

  • Shin, Dong-Jun;Lee, Jong-Hak;Kang, Young-Sik;Choi, Ji-Ho;Kang, Dong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.262-266
    • /
    • 2014
  • Military vehicle equipped with an antenna and a shelter for operating radar has a vibration exposure during driving time. This vibration would have influence on structure of military vehicle critically. In this paper, driving stability of the military vehicle is obtained through the vibration response analysis. And, vibration level of the military vehicle satisfied the military vibration specification through analysis and comparing the MIL-STD-810G. PSD and Grms data obtained by road test can be used for vibration test specification of cabinets and electronic equipment in shelter.

  • PDF

Utilization of SAR Data for Baseline Environmental Studies of Central Cebu Island, Philippines ? Phase 1

  • Lituanas, Michael B.;Salvador, Jerry Hervacio G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.981-983
    • /
    • 2003
  • The Remote Sensing Group of the Mines and Geosciences Bureau (MGB) has acquired SAR data of the Central Cebu Island for its research study area. The MGB is one of the proponent of DOST-NASA PACRIM II Project, which is composed of eleven (11) agencies and institutions in the Philippines, that focuses on the scientific application of radar data with the theme on hazard and natural resources management. The PACRIM II Project, being done on three-year term, is slated for completion in the year 2004. The main thrust of the project study of the MGB is the baseline environmental monitoring studies, on which the data are to be fused with some other available data from LandSAT and photogrammetry. The generated data is part of the information for the update of thematic mapping being done. The 12 ${\times}$ 60 km swath AirSAR data covers the Central Cebu Island. The highlights of conducting this research project are: Extent of Watershed Basin boundaries - identification of the tributaries that drain water supply to the metropolitan area; Monitoring of the mountain highways - identification of landslide risk prone sites as part of natural hazard monitoring on a national highway that cuts along the mountainous areas; and Coastline change assessment - monitoring the coastline activities relative to the rapid urbanization and exposure as part of coastal management. The Phase 1 of this report discusses the fusion with the ArcView generated data as baseline studies on the monitoring activities.

  • PDF

Allocation of the skipper's attention depending on the longline fishing process of the coastal composite fishing vessel (연안복합어선의 연승조업과정에 따른 선장의 주의 배분)

  • KIM, Min-Son;HWANG, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • This study analyzed the allocation of the skipper's attention during fishing operation in the wheelhouse of a Korean coastal composite fishing vessel by using video observation. To summarize the results, the ratio of lookout, radar and GPS monitoring, which is essential for prevention of collision at sea, was significantly lower than that of other fishing operation due to the attention concentration on the work place during hauling line. In order to reduce exposure to risk of collisions due to concentration of attention to certain tasks such as line hauling, it is necessary to develop an alert system that can notify the approach of other ships or obstruction throughout the ship using information from radar or the automatic identification system. In addition, the order of attention allocation to devices and facilities obtained in this study is expected to be used as basic data for device or facility layout based on the principle of usage frequency in designing wheelhouse for coastal composite fishing vessels in the future.

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Expert-novice differences in visual information processing in air traffic control (항공관제 전문가와 훈련관제사의 시각정보처리 차이)

  • Kwon, Hyok-Jin;Ham, Seong-Soo;Kim, Hye-Jeong;Han, Jung-Won;Sohn, Young-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.72-82
    • /
    • 2010
  • This study investigated how air traffic controllers (ATCs) perceive the visual information on radar screen and examined quantitative and qualitative differences as a function of expertise. Little research has shown that how much information is processed by ATC visually and perceptually, how ATCs represent the information, and what difference exists between experts and novices. Participants were asked to draw representing visual information on the blank sector map after a 5-second exposure. Data were analyzed by a superimposing method to identify correctly represented information. Results showed that the expert group had much larger size of chunking and their pattern was wider and more accurate than the novice group. The practical application and methodological implications are also discussed for further research.