DOI QR코드

DOI QR Code

PBGA Packaging Reliability under Satellite Random Vibration

인공위성 임의진동에서의 PBGA 패키징 신뢰성

  • Received : 2018.08.02
  • Accepted : 2018.09.29
  • Published : 2018.10.01

Abstract

The purpose of this research is to verify the feasibility of Plastic Ball Grid Array (PBGA), one of the most popular chip packaging types for commercial electronics, under strong random vibration occurred in satellite during launch. Experiment were performed by preparing daisy chained PCB specimen, where large size PBGA were surface mounted, and the PCB was fixed to an aluminum frame which is commonly used to install the electronics parts to satellite. Then the entire sample was fixed to vibration tester. The random vibration power spectrum density employed in the tests were composed of two steps, the acceptance level of 22.7 Grms, and qualification level of 32.1 Grms with given period of time. The test results showed no solder cracks, which provided the strong structural integrity and feasibility evidences of the PBGA packaging to aerospace electronics. Numerical analyses were also performed to calculate the solder stresses and analyze their development mechanism.

이 연구의 목적은 상업적으로 가장 많이 쓰이는 패키징의 하나인 PBGA 구조가 발사중 인공위성에서 발생하는 강력한 임의 진동하에서 구조적 신뢰성을 유지하는가에 대한 검증에 있다. 실험시편을 만들기 위해 데이지 체인이 형성된 회로기판에 두 가지 큰 사이즈의 PBGA칩들을 실장시킨 후, 인공위성의 전자장비 채결에 사용되는 일반적인 알루미늄 프레임에 고정하여 실험에 필요한 샘플을 제작하였다. 이 샘플을 진동 시험기에 고정시키고 22.7 Grms의 수락수준 및 32.1 Grms의 인증수준 등 두 단계로 구성된 임의진동을 사용하여 주어진 시간에 따라 실험을 실시하였다. 실험 결과 모든 샘플에서 솔더의 균열이 발생되지 않았으며, 차후 항공 및 우주용 전자장비를 대치할 수 있는 효과적인 패키징 구조의 가능성을 보여 줬다. 또한 유한요소법을 이용하여 솔더의 응력을 계산하고 그 발생 메커니즘을 해석하였다.

Keywords

References

  1. Qi, H., Osterman, R., and Pecht, M., "Plastic Ball Grid Array Solder Joint Reliability for Avionics Applications," IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, Vol. 30, 2007, pp. 242-247. https://doi.org/10.1109/TCAPT.2007.898346
  2. Elik, M., and Genc, C., "Mechanical fatigue of an electronic component under random vibration," Fatigue and Fracture of Engineering Materials and Structures, Vol. 31, 2008, pp. 505-516. https://doi.org/10.1111/j.1460-2695.2008.01227.x
  3. Che, F. X., and Pang, J. H. L., "Vibration reliability test and finite element analysis for flip chip solder joints," Microelectronics Reliability, Vol. 49, 2009, pp. 754-760. https://doi.org/10.1016/j.microrel.2009.03.022
  4. Zhou, Y., Al-Bassyiouni, M., and Dasgupta, A., "Vibration Durability Assessment of Sn3.0Ag0.5Cu and Sn37Pb Solders Under Harmonic Excitation," ASME Transaction on Journal of Electronic Packaging, Vol. 131, 2009, 011016-1. https://doi.org/10.1115/1.3078195
  5. Wu, M., "Design of experiments to investigate reliability for solder joints PBGA package under high cycle fatigue," Microelectronics Reliability, Vol. 50, 2010, pp. 127-139. https://doi.org/10.1016/j.microrel.2009.09.007
  6. Yu, D., Al-Yafawi, A., Nguyen, T. T., Park, S., and Chung, S., "High-cycle fatigue life prediction for Pb-free BGA under random vibration loading," Microelectronics Reliability, Vol. 51, 2011, pp. 649-656. https://doi.org/10.1016/j.microrel.2010.10.003
  7. Li, R. S., "A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load," Transactions of the ASME, Journal of Electronic Packaging, Vol. 123, 2001, pp. 394-400. https://doi.org/10.1115/1.1372318
  8. Zhou, Y., Al-Bassyiouni, M., and Dasgupta, A., "Harmonic and Random Vibration Durability of SAC305 and Sn37Pb Solder Alloys," IEEE Transactions on Components and Packaging Technologies, Vol. 33, 2010, pp. 319-328. https://doi.org/10.1109/TCAPT.2009.2036834
  9. Basaran, C., Cartwright A., and Zhao, Y., "Experimental Damage Mechanics of Microelectronics Solder Joints under Concurrent Vibration and Thermal Loading," International Journal of Damage Mechanics, Vol. 10, 201, pp. 153-170. https://doi.org/10.1106/HLB3-MJC8-JVYL-9A9P
  10. Basaran, C., Chandaroy, R., "Thermomechanical Analysis of Solder Joints Under Thermal and Vibrational Loading," Transactions of the ASME, Journal of Electronic Packaging, Vol. 124, 2002, pp. 60-66. https://doi.org/10.1115/1.1400752
  11. Zhao, Y., Basaran, C., Cartwright, A., and Dishongh, T., "Thermomechanical behavior of micron scale solder joints under dynamic loads," Mechanics of Materials, Vol. 3, 2000, pp. 161-.
  12. Ko, Y. H., Kim, T. S., Lee, Y. K., Yoo, S. H., and Lee, C. W., "Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders," Journal of the Microelectronics and Packaging Society, Vol. 19, 2012, pp. 31-36. https://doi.org/10.6117/kmeps.2012.19.3.031
  13. Ghaffarian, R., "CCGA packages for space applications," Microelectronics Reliability, Vol. 46, 2006, pp. 2006-2014. https://doi.org/10.1016/j.microrel.2006.07.094
  14. Kim, Y. K., and Hwang, D. S., "PBGA packaging reliability assessments under random vibrations for space application," Microelectronics Reliability, Vol. 55, 2015, pp. 172-179. https://doi.org/10.1016/j.microrel.2014.09.022
  15. Kim, Y. K., and Hwang, D. S., "Experimental Assessment of PBGA Packaging Reliability under Strong Random Vibrations," Journal of the Microelectronics and Packaging Society, Vol. 20, No. 3, 2013, pp. 59-62. https://doi.org/10.6117/KMEPS.2013.20.3.059
  16. Steinberg, D. S., Vibration Analyses for Electronics Equipment, John Wiley and Sons, Inc. 2000.