DOI QR코드

DOI QR Code

Functional Verification of Nylon Wire Cutting-Type Holding & Release Mechanism for 6U CubeSat's Solar Panel

나일론선 절단방식 6U 큐브위성용 태양전지판 구속분리장치의 기능검증

  • Park, Yeon-Hyeok (Department of Aerospace Engineering, Chosun University) ;
  • Go, Ji-Seong (Department of Aerospace Engineering, Chosun University) ;
  • Chae, Bong-Geon (Department of Satellite System, Dream Space World) ;
  • Lee, Seong-Ho (Department of Satellite System, Dream Space World) ;
  • Oh, Hyun-Ung (Department of Aerospace Engineering, Chosun University)
  • Received : 2018.07.04
  • Accepted : 2018.09.21
  • Published : 2018.10.01

Abstract

Conventional nylon wire cutting-type holding and release mechanisms (HRMs) are limited to securely hold the solar panel under launch environment as the size of the panel increases because the nylon wire is tightened directly on the surface of the solar panel. In this study, we proposed a nylon wire cutting-type HRM for 6U CubeSat's solar panel applying elliptic-shaped bracket with a Ball & Socket interface. The proposed HRM has the advantage of higher holding capability along in-plane and out-of plane directions of solar panel and simplicity in tightening process of nylon wire. The design drivers of structural design of CubeSat's solar panel with the proposed HRM were defined by structural analysis under launch loads. In addition, The design effectiveness of the proposed HRM was verified through the functional tests according to the thickness of nylon wire and the number of wire winding under various temperature conditions.

종래의 큐브위성용 나일론선 절단방식 태양전지판 구속분리장치는 단순히 패널 평면상에 나일론선을 체결함에 따른 취약한 구속력으로 인해 태양전지판 면적이 증가함에 따라 발사하중에 대한 구조 건전성 확보에 한계가 존재한다. 본 연구에서는 전술한 종래 분리장치의 한계점 극복을 위해 Ball & Socket 접속부가 반영된 별도의 타원형 브라켓을 적용하여 높은 구속력, 전개 및 평면 방향 동시구속 및 체결작업의 용이성 등의 장점을 갖는 6U 큐브위성용 태양전지판 구속분리장치를 제안하였다. 상기 구속분리장치의 설계 방향성 파악을 위해 큐브위성용 태양전지판 조립체에 대한 발사하중을 고려한 구조해석을 실시하였다. 또한, 상이한 온도조건에서의 나일론선 두께 및 체결횟수에 따른 기능시험을 수행하여 제안된 구속분리장치의 유효성을 검증하였다.

Keywords

References

  1. Woellert, K., Ehrenfreund, P., Ricco, A. J., and Hertzfeld, H., "Cubesats: Cost-effective Scienceand Technology Platforms for Emerging and Developing Nations," Advances in Space Research, Vol. 47, No. 4, 2011, pp. 663-684. https://doi.org/10.1016/j.asr.2010.10.009
  2. Peral, E., Tanelli, S., Haddad, Z., Sy, O., Stephens, G., and Im, E., "RainCube: A Proposed Constellation of Precipitation Profiling Radars in CubeSat," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, pp. 1261-1264.
  3. Apland, C., Persons, D., Weir, D., and Marley, M., "A Novel Release Mechanism Employing the Principle of Differential Coefficients of Thermal Expansion," The 41st Aerospace Mechanisms Symposium, 2012, pp. 465-478.
  4. Oh, H. U., and Lee, M. J., "Performance Verification of Separation Nut Type Nonexplosive Separation Device for Cube Satellite Application," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 10, 2013, pp. 827-832. https://doi.org/10.5139/JKSAS.2013.41.10.827
  5. Woo, S. H., and Han, J. H., "Mid Frequency Shock Response Determination by Using Energy Flow Method and Time Domain Correction," Shock and Vibration, Vol. 20, No. 5, 2013, pp. 847-862. https://doi.org/10.1155/2013/701863
  6. http://www.gomspace.com
  7. Nakaya, K., Konoue, K., Sawada, H., Ui, K., Okada, H., Miyashita, N., Iai, M., Urabe, T., Yamaguchi, N., Kashiwa, M., Omagari, K., Morita, I., and Matunaga, S., "Tokyo Tech Cubesat: CUTE-I Design & Development of Flight Model and Future Plan," AIAA 21st International Communications Satellite Systems Conference and Exhibit, 2003, pp. 2003-2388.
  8. http://n-avionics.com
  9. Blackwell, W., et al "MicroMAS: A First Step Towards a Nanosatellite Constellation for Global Storm Observation," Proceedings of the AIAA/USU Conference, Small Satellite Constellations, 2013, pp. 10-15
  10. Jeon, S. H., Jang, S. E., Jung, H. M., Cha, J. Y., and Oh, H. U., "Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab," International Journal of Aerospace System Engineering, Vol. 1, No. 1, 2014, pp. 34-43
  11. Miles, J. W., "On Structural Fatigue under Random Loading," Journal of the Aeronautical Sciences, 1954, pp. 753-762
  12. Bernstein, K. S., et al., "Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A," NASA, 2011.
  13. General Environmental Verification Standard 7000-a, NASA, 2013
  14. http://www.berkley-fishing.com/
  15. http://www.passivecomponent.com/