DOI QR코드

DOI QR Code

Antioxidant Activity of Dopamine-Modified Hydrogels Containing Cross-linked Hyaluronic Acid

도파민이 적용된 히알루론산 가교 하이드로겔의 항산화 활성

  • Received : 2018.11.27
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Purpose : : In this study, we made dopamine-functionalized hydrogels containing a cross-linked hyaluronic acid (HA) network and investigated their antioxidant activities. Methods : In the first step, we made poly hydroxyethyl methacrylate(p(HEMA))-based hydrogels post-modified with an interpenetrating polymer network(IPN) structure composed of HA polymers and a p(HEMA) network. The subsequent functionalization with dopamine via an amide coupling reaction resulted in the antioxidant hydrogels. Their antioxidant activities were evaluated using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays. Results : The dopamine-modified hydrogels exhibited significant antioxidant activities, when compared to unmodified control. The presence of the HA-IPN structure improved the surface wettability of the hydrogel while dopamine-conjugated IPN hydrogel did not demonstrate the significant difference compared to hydrogel control. Dopamine-modified hydrogels exhibited high transmittance (>88%). Conclusion : The results demonstrate that the development of antioxidant hydrogels based on dopamine-conjugated HA-IPN structures may help develop ophthalmic and biomedical materials.

목적 : 이 연구에서는 도파민이 적용된 히알루론산 가교 하이드로겔을 제조하고 항산화 활성을 조사하였다. 방법 : 먼저 히알루론산과 p(HEMA)로 구성된 상호침투고분자구조로 후처리 한 p(HEMA) 기반 하이드로겔을 제조하였다. 다음으로 아마이드 결합반응을 통해 도파민이 적용된 항산화 하이드로겔을 제조하였다. 항산화 활성의 평가는 ABTS 와 DDPH 라디칼 소거능 방법을 사용하였다. 결과 : 도파민이 적용된 하이드로겔은 유의한 항산화 활성을 나타내었다. 히알루론산의 가교는 하이드로겔 표면의 습윤성을 개선시킨 반면에 도파민이 적용된 하이드로겔은 대조군과 비교하여 유의한 차이를 나타내지 못했다. 도파민이 적용된 하이드로겔은 높은 광투율을 나타내었다. (>88%) 결론 : 도파민이 결합된 히알루론산의 가교에 기초한 항산화 하이드로겔의 개발이 안의료 및 생물의학 재질 개발에 도움을 줄 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : Dongshin University

References

  1. Sardesai NP, Andreescu D et al.: Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J Am Chem Soc. 135(45), 16770-16773, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24079646 https://doi.org/10.1021/ja408087s
  2. Lee HL, Choi CW et al.: Antimetastatic Activity of Gallic Acid-conjugated Chitosan against Pulmonary Metastasis of Colon Carcinoma Cells. Bull Korean Chem Soc. 39(1), 90-96, 2018. https://doi.org/10.1002/bkcs.11351
  3. Deligiannakis Y, Sotiriou GA et al.: Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid. ACS Appl Mater Interfaces 4(12), 6609-6617, 2012. https://www.ncbi.nlm.nih.gov/pubmed/23121088 https://doi.org/10.1021/am301751s
  4. Alam MS, Lee DU: Quantum-Chemical Studies to Approach the Antioxidant Mechanism of Nonphenolic Hydrazone Schiff Base Analogs: Synthesis, Molecular Structure, Hirshfeld and Density Functional Theory Analyses. Bull Korean Chem Soc. 36(2), 682-691, 2015. http://www.riss.kr/link?id=A103920850
  5. Astete CE, Dolliver D et al.: Antioxidant Poly (lactic-co-glycolic) Acid Nanoparticles Made with ${\alpha}$-Tocopherol-Ascorbic Acid Surfactant. ACS Nano. 5(12), 9913-9325, 2011. https://www.ncbi.nlm.nih.gov/pubmed/22017172
  6. Lee SS, Song W et al.: Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano. 7(11), 9693-9703, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24079896 https://doi.org/10.1021/nn4026806
  7. Kanazawa K, Sakakibara H: High Content of Dopamine, a Strong Antioxidant, in Cavendish Banana. J Agric Food Chem. 48(3), 844-848, 2000. https://www.ncbi.nlm.nih.gov/pubmed/10725161 https://doi.org/10.1021/jf9909860
  8. Kim B, Kang B et al.: Polyphenol-functionalized hydrogels using an interpenetrating chitosan network and investigation of their antioxidant activity. Macromolecular Res. 26(1), 35-39, 2018 http://www.riss.kr/link?id=O73495571 https://doi.org/10.1007/s13233-018-6001-8
  9. Scoponi M, Cimmino S et al.: Photo-stabilisation mechanism under natural weathering and accelerated photo-oxidative conditions of LDPE films for agricultural applications. Polymer 41(22), 7969-7980, 2000. http://www.riss.kr/link?id=O13297909 https://doi.org/10.1016/S0032-3861(00)00160-9
  10. Giannakopoulos E, Christoforidis KC et al.: Influence of Pb(II) on the radical properties of humic substances and model compounds. J Phys Chem A. 109(10), 2223-2232, 2005. https://www.ncbi.nlm.nih.gov/pubmed/16838994 https://doi.org/10.1021/jp045121q
  11. Catauro M, Papale F et al.: Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater. 16(3), 035001, 2015. https://www.ncbi.nlm.nih.gov/pubmed/27877802 https://doi.org/10.1088/1468-6996/16/3/035001
  12. Catauro M, Bollino F et al.: Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol-gel technique. J Biomed Mater Res A. 102(12), 4473-4479, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24677575
  13. Ebabe Elle R, Rahmani S et al.: Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Mol Pharm. 13(8), 2647-2660, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27367273 https://doi.org/10.1021/acs.molpharmaceut.6b00190
  14. Pasanphan W, Buettner GR et al.: Chitosan conjugated with deoxycholic acid and gallic acid: A novel biopolymer-based additive antioxidant for polyethylene. Appl Polym Sci. 109(1), 38-46, 2008. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.27953
  15. Cho YS, Kim SK et al.: Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym. 83(4), 1617-1622, 2011. https://www.sciencedirect.com/science/article/pii/S0144861710008258 https://doi.org/10.1016/j.carbpol.2010.10.019
  16. Cirillo G, Kraemer K et al.: Biological Activity of a Gallic Acid-Gelatin Conjugate. Biomacromolecules 11(12), 3309-3315, 2010. https://www.ncbi.nlm.nih.gov/pubmed/21058637 https://doi.org/10.1021/bm100760x
  17. Kim HJ, Ryu GC et al.: Hydrogel lenses functionalized with polysaccharide for reduction of protein adsorption. Macromolecular Res. 23(1), 74-78, 2015. https://link.springer.com/article/10.1007/s13233-015-3009-1
  18. Gramlich WM, Holloway JL et al.: Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods. Nanotechnology 25(1), 014004, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24334436 https://doi.org/10.1088/0957-4484/25/1/014004
  19. Brand-Williams W, Cuvelier ME et al.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28(1), 25-30, 1995. https://www.sciencedirect.com/science/article/pii/S0023643895800085 https://doi.org/10.1016/S0023-6438(95)80008-5
  20. Arnao MB, Cano A et al.: The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73(2), 239-244, 2001. https://www.sciencedirect.com/science/article/pii/S0308814600003241 https://doi.org/10.1016/S0308-8146(00)00324-1
  21. Van BM, Jones L et al.: Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 29(7), 780-789, 2008. https://www.ncbi.nlm.nih.gov/pubmed/18023474 https://doi.org/10.1016/j.biomaterials.2007.10.039