Browse > Article
http://dx.doi.org/10.17337/JMBI.2018.20.4.513

Antioxidant Activity of Dopamine-Modified Hydrogels Containing Cross-linked Hyaluronic Acid  

Ryu, Geun-Chang (Dept. of Optometry and Optic science of Dongshin University)
Hwang, Jeong Hee (Dept. of Optometry, Gangdong University)
Lee, Cheol-Woo (Dept. of Optometry and Optic science of Dongshin University)
Publication Information
The Korean Journal of Vision Science / v.20, no.4, 2018 , pp. 513-521 More about this Journal
Abstract
Purpose : : In this study, we made dopamine-functionalized hydrogels containing a cross-linked hyaluronic acid (HA) network and investigated their antioxidant activities. Methods : In the first step, we made poly hydroxyethyl methacrylate(p(HEMA))-based hydrogels post-modified with an interpenetrating polymer network(IPN) structure composed of HA polymers and a p(HEMA) network. The subsequent functionalization with dopamine via an amide coupling reaction resulted in the antioxidant hydrogels. Their antioxidant activities were evaluated using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays. Results : The dopamine-modified hydrogels exhibited significant antioxidant activities, when compared to unmodified control. The presence of the HA-IPN structure improved the surface wettability of the hydrogel while dopamine-conjugated IPN hydrogel did not demonstrate the significant difference compared to hydrogel control. Dopamine-modified hydrogels exhibited high transmittance (>88%). Conclusion : The results demonstrate that the development of antioxidant hydrogels based on dopamine-conjugated HA-IPN structures may help develop ophthalmic and biomedical materials.
Keywords
Interpenetrating polymer network; Hydrogel; Hyaluronic acid; Dopamine; Antioxidant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Scoponi M, Cimmino S et al.: Photo-stabilisation mechanism under natural weathering and accelerated photo-oxidative conditions of LDPE films for agricultural applications. Polymer 41(22), 7969-7980, 2000. http://www.riss.kr/link?id=O13297909   DOI
2 Giannakopoulos E, Christoforidis KC et al.: Influence of Pb(II) on the radical properties of humic substances and model compounds. J Phys Chem A. 109(10), 2223-2232, 2005. https://www.ncbi.nlm.nih.gov/pubmed/16838994   DOI
3 Catauro M, Papale F et al.: Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater. 16(3), 035001, 2015. https://www.ncbi.nlm.nih.gov/pubmed/27877802   DOI
4 Catauro M, Bollino F et al.: Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol-gel technique. J Biomed Mater Res A. 102(12), 4473-4479, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24677575
5 Ebabe Elle R, Rahmani S et al.: Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Mol Pharm. 13(8), 2647-2660, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27367273   DOI
6 Pasanphan W, Buettner GR et al.: Chitosan conjugated with deoxycholic acid and gallic acid: A novel biopolymer-based additive antioxidant for polyethylene. Appl Polym Sci. 109(1), 38-46, 2008. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.27953   DOI
7 Cho YS, Kim SK et al.: Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym. 83(4), 1617-1622, 2011. https://www.sciencedirect.com/science/article/pii/S0144861710008258   DOI
8 Cirillo G, Kraemer K et al.: Biological Activity of a Gallic Acid-Gelatin Conjugate. Biomacromolecules 11(12), 3309-3315, 2010. https://www.ncbi.nlm.nih.gov/pubmed/21058637   DOI
9 Kim HJ, Ryu GC et al.: Hydrogel lenses functionalized with polysaccharide for reduction of protein adsorption. Macromolecular Res. 23(1), 74-78, 2015. https://link.springer.com/article/10.1007/s13233-015-3009-1   DOI
10 Gramlich WM, Holloway JL et al.: Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods. Nanotechnology 25(1), 014004, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24334436   DOI
11 Brand-Williams W, Cuvelier ME et al.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28(1), 25-30, 1995. https://www.sciencedirect.com/science/article/pii/S0023643895800085   DOI
12 Arnao MB, Cano A et al.: The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73(2), 239-244, 2001. https://www.sciencedirect.com/science/article/pii/S0308814600003241   DOI
13 Van BM, Jones L et al.: Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 29(7), 780-789, 2008. https://www.ncbi.nlm.nih.gov/pubmed/18023474   DOI
14 Lee SS, Song W et al.: Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano. 7(11), 9693-9703, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24079896   DOI
15 Sardesai NP, Andreescu D et al.: Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J Am Chem Soc. 135(45), 16770-16773, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24079646   DOI
16 Lee HL, Choi CW et al.: Antimetastatic Activity of Gallic Acid-conjugated Chitosan against Pulmonary Metastasis of Colon Carcinoma Cells. Bull Korean Chem Soc. 39(1), 90-96, 2018. https://doi.org/10.1002/bkcs.11351   DOI
17 Deligiannakis Y, Sotiriou GA et al.: Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid. ACS Appl Mater Interfaces 4(12), 6609-6617, 2012. https://www.ncbi.nlm.nih.gov/pubmed/23121088   DOI
18 Alam MS, Lee DU: Quantum-Chemical Studies to Approach the Antioxidant Mechanism of Nonphenolic Hydrazone Schiff Base Analogs: Synthesis, Molecular Structure, Hirshfeld and Density Functional Theory Analyses. Bull Korean Chem Soc. 36(2), 682-691, 2015. http://www.riss.kr/link?id=A103920850
19 Astete CE, Dolliver D et al.: Antioxidant Poly (lactic-co-glycolic) Acid Nanoparticles Made with ${\alpha}$-Tocopherol-Ascorbic Acid Surfactant. ACS Nano. 5(12), 9913-9325, 2011. https://www.ncbi.nlm.nih.gov/pubmed/22017172
20 Kanazawa K, Sakakibara H: High Content of Dopamine, a Strong Antioxidant, in Cavendish Banana. J Agric Food Chem. 48(3), 844-848, 2000. https://www.ncbi.nlm.nih.gov/pubmed/10725161   DOI
21 Kim B, Kang B et al.: Polyphenol-functionalized hydrogels using an interpenetrating chitosan network and investigation of their antioxidant activity. Macromolecular Res. 26(1), 35-39, 2018 http://www.riss.kr/link?id=O73495571   DOI