References
- Bang M, Oh S, Lim KS, Kim Y, Oh S. 2014. The involvement of ATPase activity in the acid tolerance of Lactobacillus rhamnosus strain GG. Int. J. Dairy Technol. 67: 229-236. https://doi.org/10.1111/1471-0307.12123
- Lambert R, Stratford M. 1999. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 86: 157-164. https://doi.org/10.1046/j.1365-2672.1999.00646.x
- Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26: 700-711. https://doi.org/10.1016/j.fm.2009.07.007
- Choi SH, Baumler DJ, Kaspar CW. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol. 66: 3911-3916. https://doi.org/10.1128/AEM.66.9.3911-3916.2000
- Warnecke T, Gill RT. 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25. https://doi.org/10.1186/1475-2859-4-25
- Duary RK, Batish VK, Grover S. 2010. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res. Microbiol. 161: 399-405. https://doi.org/10.1016/j.resmic.2010.03.012
- Kullen MJ, Klaenhammer TR. 1999. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol. Microbiol. 33: 1152-1161.
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
- Broadbent JR, Larsen RL, Deibel V, Steele JL. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458. https://doi.org/10.1128/JB.01618-09
- Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J. Bacteriol. 195: 4506-4516. https://doi.org/10.1128/JB.00758-13
- Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. 2003. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J. Bacteriol. 185: 5117-5124. https://doi.org/10.1128/JB.185.17.5117-5124.2003
- Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8: 1029-1041. https://doi.org/10.1002/pmic.200700925
- Wall T, Båth K, Britton RA, Jonsson H, Versalovic J, Roos S. 2007. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol. 73: 3924-3935. https://doi.org/10.1128/AEM.01502-06
- Salminen S, Isolauri E, Salminen E. 1996. Probiotics and stabilisation of the gut mucosal barrier. Asia Pac. J. Clin. Nutr. 5: 53-56.
- Di Caro S, Tao H, Grillo A, Elia C, Gasbarrini G, Sepulveda A, et al. 2005. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Dig. Liver Dis. 37: 320-329. https://doi.org/10.1016/j.dld.2004.12.008
- Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, et al. 2011. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J. Gastroenterol. 17: 750-759. https://doi.org/10.3748/wjg.v17.i6.750
- Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344. https://doi.org/10.1128/AEM.07047-11
- Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198. https://doi.org/10.1073/pnas.0908876106
- Mandlik A, Swierczynski A, Das A, Ton-That H. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16: 33-40. https://doi.org/10.1016/j.tim.2007.10.010
- Proft T, Baker E. 2009. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell Mol. Life Sci. 66: 613-635. https://doi.org/10.1007/s00018-008-8477-4
- Tynkkynen S, Singh KV, Varmanen P. 1998. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 41: 195-204. https://doi.org/10.1016/S0168-1605(98)00051-8
- Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, et al. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol. 147: 181-187. https://doi.org/10.1016/j.ijfoodmicro.2011.04.003
- Rallu F, Gruss A, Maguin E. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251. https://doi.org/10.1007/BF00395935
- Lim EM, Ehrlich SD, Maguin E. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557-2561. https://doi.org/10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
- Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, et al. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteom. 75: 1357-1374. https://doi.org/10.1016/j.jprot.2011.11.009
- Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183. https://doi.org/10.1080/10408410600880643
- Wu C, Zhang J, Du G, Chen J. 2013. Aspartate protects Lactobacillus casei against acid stress. Appl. Microbiol. Biotechnol. 97: 4083-4093. https://doi.org/10.1007/s00253-012-4647-2
- Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I. 2014. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 9: e113922. https://doi.org/10.1371/journal.pone.0113922
- von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, et al. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl. Environ. Microbiol. 76: 2049-2057. https://doi.org/10.1128/AEM.01958-09
- Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 108: 11217-11222. https://doi.org/10.1073/pnas.1105380108
- Doron S, Snydman DR, Gorbach SL. 2005. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34: 483-498. https://doi.org/10.1016/j.gtc.2005.05.011
Cited by
- Impact of spray‐drying on the pili of Lactobacillus rhamnosusGG vol.12, pp.5, 2018, https://doi.org/10.1111/1751-7915.13426
- Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells vol.62, pp.6, 2018, https://doi.org/10.5187/jast.2020.62.6.864
- Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey vol.11, pp.None, 2018, https://doi.org/10.3389/fcimb.2021.609722
- The Functional Properties of Lactobacillus casei HY2782 Are Affected by the Fermentation Time vol.11, pp.6, 2018, https://doi.org/10.3390/app11062481
- Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013 vol.203, pp.6, 2018, https://doi.org/10.1007/s00203-021-02240-7
- Factors Relating to Adhesion and Aggregation of Lactobacillus paracasei and Lactobacillus rhamnosus Strains vol.90, pp.6, 2018, https://doi.org/10.1134/s0026261721060151