• 제목/요약/키워드: microbial physiology

검색결과 112건 처리시간 0.025초

Functional Metagenomics using Stable Isotope Probing: a Review

  • Vo, Nguyen Xuan Que;Kang, Ho-Jeong;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.231-237
    • /
    • 2007
  • The microbial eco-physiology has been the vital key of microbial ecological research. Unfortunately, available methods for direct identity of microorganisms and for the investigation of their activity in complicated community dynamics are limited. In this study, metagenomics was considered as a promising functional genomics tool for improving our understanding of microbial eco-physiology. Its potential applications and challenges were also reviewed. Because of tremendous diversity in microbial populations in environment, sequence analysis for whole metagenomic libraries from environmental samples seems to be unrealistic to most of environmental engineering researchers. When a target function is of interest, however, sequence analysis for whole metagenomic libraries would not be necessary. For this case, nucleic acids of active populations of interest can be selectively gained using another cutting-edge functional genomic tool, SIP (stable isotope probing) technique. If functional genomes isolated by SIP can be transferred into metagenomic library, sequence analysis for such selected functional genomes would be feasible because the reduced size of clone library may become adequate for sequencing analysis. Herein, integration of metagenomics with SIP was suggested as a novel functional genomics approach to study microbial eco-physiology in environment.

Potential for Efficient Synthesis of GSH Utilizing GCS1 and GLR1 Mutant Strains of Candida albicans

  • Jaeyoung SON;Min-Kyu KWAK
    • 식품보건융합연구
    • /
    • 제10권2호
    • /
    • pp.7-11
    • /
    • 2024
  • Glutathione (GSH) is a vital compound composed of glutamic acid, cysteine, and glycine, crucial for cellular functions including oxidative stress defense and detoxification. It has widespread applications in pharmaceuticals, cosmetics, and food industries due to its antioxidant properties and immune system support. Two primary methods for GSH synthesis are enzymatic and microbial fermentation. Enzymatic synthesis is efficient but costly, while microbial fermentation, particularly using yeast strains like Candida albicans, offers a cost-effective alternative. This study focuses on genetically modifying C. albicans mutants, specifically targeting glutathione reductase (GLR1) and gamma-glutamylcysteine synthetase (GCS1) genes, integral to GSH synthesis. By optimizing these mutants, the research aims to develop a model for efficient GSH production, potentially expanding its applications in the food industry.

먹물버섯 Coprinellus congregatus에서 분열자를 사용한 형질전환 (Genetic Transformation of a Mushroom Forming Fungus Coprinellus congregatus to an Antibiotic Resistance Using Oidia Instead of Protoplast Generation)

  • 박남미;김동식;최형태
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.59-61
    • /
    • 2006
  • 먹물버섯의 하나인 Coprinellus congregatus를 대상으로 유전자의 도입을 위한 형질전환실험에서 원형질체를 생성하지 않고 분열자 (oidium)를 사용하는 방법을 확립하였다. 분열자는 20일 이상된 CKMM 한천배지에서 생성되며, 이를 밤샘배양으로 발아를 촉진시킨 상태에서 전기천공방법으로 항생물질 basta에 대한 형질전환을 수행한 결과 10-20 형질전환체/${\mu}g$ DNA의 수율로 형질전환체를 확보할 수 있었다. 이 형질전환체들은 도입된 벡터가 염색체 상에 삽입되어 유전적으로 안정된 상태를 유지하였다.

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향 (Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers)

  • 백열창;정진영;오영균;김민석;이성대;이현정;도윤정;;최혁
    • 한국유기농업학회지
    • /
    • 제25권3호
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.

The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases

  • Lee, Tae Wook;Heo, Soon Chul;Kwon, Yang Woo;Park, Gyu Tae;Yoon, Jung Won;Kim, Seung-Chul;Jang, Il Ho;Kim, Jae Ho
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.504-509
    • /
    • 2017
  • Ischemia is a serious disease, characterized by an inadequate blood supply to an organ or part of the body. In the present study, we evaluated the effects of the anti-microbial peptide SR-0379 on the stem cell-mediated therapy of ischemic diseases. The migratory and tube-forming abilities of human endothelial progenitor cells (EPCs) were enhanced by treatment with SR-0379 in vitro. Intramuscular administration of SR-0379 into a murine ischemic hindlimb significantly enhanced blood perfusion, decreased tissue necrosis, and increased the number of blood vessels in the ischemic muscle. Moreover, co-administration of SR-0379 with EPCs stimulated blood perfusion in an ischemic hindlimb more than intramuscular injection with either SR-0379 or EPCs alone. This enhanced blood perfusion was accompanied by a significant increase in the number of CD31- and ${\alpha}$-SMA-positive blood vessels in ischemic hindlimb. These results suggest that SR-0379 is a potential drug candidate for potentiating EPC-mediated therapy of ischemic diseases.

Bioavailability of Phosphorus in Feeds of Plant Origin for Pigs - Review -

  • Weremko, D.;Fandrejewski, H.;Zebrowska, T.;Han, In K.;Kim, J.H.;Cho, W.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권6호
    • /
    • pp.551-566
    • /
    • 1997
  • Phosphorus has been known as an essential component of animal body. However, the requirement has not been determined precisely because of the variable bioavailabilities of feedstuffs from plant origin. The bioavailability of P in various feedstuffs of plant origin varies from 10 to 60%. Digestibility and availability of the P differed considerably depending on the feed. The lowest values were found for maize (under 20%), the highest for wheat and triticale (over 50%). This is due to the proportion of phytate and the presence of intrinsic phytase. And the digestive tract of monogastric animals does not contain sufficient amounts of phytase, an enzyme that hydrolyses the unavailable phytate complexes to available, inorganic orthophosphates. Microbial phytase supplementation improves the P availability, and both intrinsic plant and microbial phytase improves the availability of P in feedstuffs of plant origin. In a mixture of feeds with low and high activity of intrinsic phytase and/or supplemented by commercial phytase, the P availability is additive. However, in the light of current results it seems that exceeding the P availability equal to 60-70% is unrealizable even at large microbial phytase doses.

Influence of Diet Induced Changes in Rumen Microbial Characteristics on Gas Production Kinetics of Straw Substrates In vitro

  • Srinivas, Bandla;Krishnamoorthy, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권7호
    • /
    • pp.990-996
    • /
    • 2005
  • The effect of diets varying in level and source of nitrogen (N) and fermentable organic matter on dynamic characteristics of microbial populations in rumen liquor and their impact on substrate fermentation in vitro was studied. The diets tested were straw alone, straw+concentrate mixture and straw+urea molasses mineral block (UMMB) lick. The same diets were taken as substrates and tested on each inoculum collected from the diets. Diet had no effect on the amino acid (AA) composition of either bacteria or protozoa. Differences among the diets in intake, source of N and OM affected bacterial and protozoal characteristics in the rumen. Upper asymptote of gas production (Y$\alpha$) had a higher correlation with bacterial pool size and production rate than with protozoal pool size and production rate. Among the parameters of the gas production model, Y$\alpha$ and lag time in total gas has showed significant (p<0.01) correlation with bacterial characteristics. Though the rate constant of gas production significantly differed (p<0.01) between diet and type of straw, it was least influenced by the microbial characteristics. The regression coefficient of diet and type of straw for Y$\alpha$ indicated that the effect of diet on Y$\alpha$ was threefold higher than that of the straw. As microbial characteristics showed higher correlation with Y$\alpha$, and diet had more influence on the microbial characteristics, gas production on a straw diet could be used effectively to understand the microbial characteristics.