Browse > Article
http://dx.doi.org/10.4014/jmb.1807.07033

Transcriptional Response and Enhanced Intestinal Adhesion Ability of Lactobacillus rhamnosus GG after Acid Stress  

Bang, Miseon (Division of Animal Science, Chonnam National University)
Yong, Cheng-Chung (Division of Animal Science, Chonnam National University)
Ko, Hyeok-Jin (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Choi, In-Geol (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Oh, Sejong (Division of Animal Science, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.10, 2018 , pp. 1604-1613 More about this Journal
Abstract
Lactobacillus rhamnosus GG (LGG) is a probiotic commonly used in fermented dairy products. In this study, RNA-sequencing was performed to unravel the effects of acid stress on LGG. The transcriptomic data revealed that the exposure of LGG to acid at pH 4.5 (resembling the final pH of fermented dairy products) for 1 h or 24 h provoked a stringent-type transcriptomic response wherein stress response- and glycolysis-related genes were upregulated, whereas genes involved in gluconeogenesis, amino acid metabolism, and nucleotide metabolism were suppressed. Notably, the pilus-specific adhesion genes, spaC, and spaF were significantly upregulated upon exposure to acid-stress. The transcriptomic results were further confirmed via quantitative polymerase chain reaction analysis. Moreover, acid-stressed LGG demonstrated an enhanced mucin-binding ability in vitro, with 1 log more LGG cells (p < 0.05) bound to a mucin layer in a 96-well culture plate as compared to the control. The enhanced intestinal binding ability of acid-stressed LGG was confirmed in an animal study, wherein significantly more viable LGG cells (${\geq}2log\;CFU/g$) were observed in the ileum, caecum, and colon of acid-stressed LGG-treated mice as compared with a non-acid-stressed LGG-treated control group. To our knowledge, this is the first report showing that acid stress enhanced the intestine-binding ability of LGG through the induction of pili-related genes.
Keywords
Stress response; Lactobacillus; transcriptomics; probiotics; microbial physiology; adhesion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bang M, Oh S, Lim KS, Kim Y, Oh S. 2014. The involvement of ATPase activity in the acid tolerance of Lactobacillus rhamnosus strain GG. Int. J. Dairy Technol. 67: 229-236.   DOI
2 Lambert R, Stratford M. 1999. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 86: 157-164.   DOI
3 Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26: 700-711.   DOI
4 Choi SH, Baumler DJ, Kaspar CW. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol. 66: 3911-3916.   DOI
5 Warnecke T, Gill RT. 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25.   DOI
6 Duary RK, Batish VK, Grover S. 2010. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res. Microbiol. 161: 399-405.   DOI
7 Kullen MJ, Klaenhammer TR. 1999. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol. Microbiol. 33: 1152-1161.
8 Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453.   DOI
9 Broadbent JR, Larsen RL, Deibel V, Steele JL. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458.   DOI
10 Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J. Bacteriol. 195: 4506-4516.   DOI
11 Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. 2003. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J. Bacteriol. 185: 5117-5124.   DOI
12 Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8: 1029-1041.   DOI
13 Wall T, Båth K, Britton RA, Jonsson H, Versalovic J, Roos S. 2007. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol. 73: 3924-3935.   DOI
14 Salminen S, Isolauri E, Salminen E. 1996. Probiotics and stabilisation of the gut mucosal barrier. Asia Pac. J. Clin. Nutr. 5: 53-56.
15 Mandlik A, Swierczynski A, Das A, Ton-That H. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16: 33-40.   DOI
16 Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, et al. 2011. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J. Gastroenterol. 17: 750-759.   DOI
17 Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344.   DOI
18 Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198.   DOI
19 Proft T, Baker E. 2009. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell Mol. Life Sci. 66: 613-635.   DOI
20 Tynkkynen S, Singh KV, Varmanen P. 1998. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 41: 195-204.   DOI
21 Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, et al. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol. 147: 181-187.   DOI
22 Wu C, Zhang J, Du G, Chen J. 2013. Aspartate protects Lactobacillus casei against acid stress. Appl. Microbiol. Biotechnol. 97: 4083-4093.   DOI
23 Rallu F, Gruss A, Maguin E. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251.   DOI
24 Di Caro S, Tao H, Grillo A, Elia C, Gasbarrini G, Sepulveda A, et al. 2005. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Dig. Liver Dis. 37: 320-329.   DOI
25 Lim EM, Ehrlich SD, Maguin E. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557-2561.   DOI
26 Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, et al. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteom. 75: 1357-1374.   DOI
27 Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183.   DOI
28 Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 108: 11217-11222.   DOI
29 Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I. 2014. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 9: e113922.   DOI
30 von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, et al. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl. Environ. Microbiol. 76: 2049-2057.   DOI
31 Doron S, Snydman DR, Gorbach SL. 2005. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34: 483-498.   DOI