References
- Dohlamn HG. 2002. G proteins and pheromone signaling. Annu. Rev. Physiol. 64: 129-152. https://doi.org/10.1146/annurev.physiol.64.081701.133448
- Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K. 2004. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmac. Ther. 104: 173-206. https://doi.org/10.1016/j.pharmthera.2004.08.008
- Klabunde T, Hessler G. 2002. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3: 928 -944. https://doi.org/10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5
- Naider F, Becker JM. 2004. The alpha-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 25: 1441-1463. https://doi.org/10.1016/j.peptides.2003.11.028
- Stotzler D, Duntze W. 1976. Isolation and characterization of four related peptides exhibiting alpha factor activity from Saccharomyces cerevisiae. Eur. J. Biochem. 65: 257-262. https://doi.org/10.1111/j.1432-1033.1976.tb10412.x
- Naider F, Becker JM. 1986. Structure-activity relationships of the yeast alpha-factor. CRC Crit. Rev. Biochem. 21: 225-248. https://doi.org/10.3109/10409238609113612
- Garbow JR, Breslav M, Antohi O, Naider F. 1994. Conformational analysis of the Saccharomyces cerevisiae tridecapeptide mating pheromone by 13C, 15N rotational-echo double resonance nuclear magnetic resonance spectroscopy. Biochemistry 33: 10094-10099. https://doi.org/10.1021/bi00199a037
- Henry LK, Khare S, Son C, Babu VV, Naider F, Becker JM. 2002. Identification of a contact region between the tridecapeptide alpha-factor mating pheromone of Saccharomyces cerevisiae and its G protein-coupled receptor by photoaffinity labeling. Biochemistry 41: 6128-6139. https://doi.org/10.1021/bi015863z
- Ding FX, Lee BK, Hauser M, Davenport L, Becker JM, Naider F. 2001. Probing the binding domain of the Saccharomyces cerevisiae alpha-mating factor receptor with rluorescent ligands. Biochemistry 40: 1102-1108. https://doi.org/10.1021/bi0021535
- Abel MG, Zhang YL, Lu HF, Naider F, Becker JM. 1998. Structure-function analysis of the Saccharomyces cerevisiae tridecapeptide pheromone using alanine-scanned analogs. J. Pept. Res. 52: 95-106.
- Gounarides JS, Broido MS, Becker JM, Naider F. 1993. Conformational analysis of [D-Ala9]alpha-factor and [L-Ala9]alpha-factor in solution and in the presence of lipid. Biochemistry 32: 908-917. https://doi.org/10.1021/bi00054a023
-
Ahn HJ, Hong EY, Jin DH, Hong NJ. 2014. Highly active analogs of
$\alpha$ -factor and their activities against Saccharomyces cerevisiae. Bull. Korean Chem. Soc. 35: 1365-1374. https://doi.org/10.5012/bkcs.2014.35.5.1365 -
Ahn HJ, Kim HJ, Jin DH, Hong NJ. 2015. Spectrophotometric determination of affinities of
$\alpha$ -factors for their G protein-coupled receptors in Saccharomyces cerevisiae. Bull. Korean Chem. Soc. 36: 1885-1896. https://doi.org/10.1002/bkcs.10367 - Kim KM, Lee YH, Naider F, Uddin MS, Akal-Strader A, Hauser M, et al. 2012. Multiple regulatory roles of the carboxy terminus of Ste2p a yeast GPCR. Pharmacol. Res. 65: 31-40. https://doi.org/10.1016/j.phrs.2011.11.002
- Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2: 31-34. https://doi.org/10.1038/nprot.2007.13
- Hong NJ. 2010. Structure-activity relationships of 13- and 14-membered cyclic partial retro-inverso pentapeptides related to enkephalin. Bull. Korean Chem. Soc. 31: 874-880. https://doi.org/10.5012/bkcs.2010.31.04.874
- Kim DH, Hong NJ. 2012. Activity profiles of linear, cyclic monomer and cyclic dimer of enkephalin. Bull. Korean Chem. Soc. 33: 261-269. https://doi.org/10.5012/bkcs.2012.33.1.261
- Li J, Wang S, VanDusen WJ, Schultz LD, George HA, Herber WK, et al. 2000. Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. Biotechnol. Bioeng. 70: 187-196. https://doi.org/10.1002/1097-0290(20001020)70:2<187::AID-BIT8>3.0.CO;2-H
- Taylor RG, Walker DC, McInnes RR. 1993. E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. 21: 1677-1678. https://doi.org/10.1093/nar/21.7.1677
- Bimboim HC, Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res. 7: 1513-1523. https://doi.org/10.1093/nar/7.6.1513
- Chrambach A, Rodbard D. 1971. Polyacrylamide gel electrophoresis. Science 172: 440-451. https://doi.org/10.1126/science.172.3982.440
-
Thibodeau SA, Fang R, Joung JK. 2004. High-throughput
$\beta$ -galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36: 410-415. https://doi.org/10.2144/04363BM07 - Vidal-Aroca, Giannattasio M, Brunelli E, Vezzoli A, Plevani P, Muzi-Falconi M, et al. 2006. One-step high-throughput assay for quantitative detection of beta-galactosidase activity in intact gram-negative bacteria, yeast, and mammalian cells. Biotechniques 40: 433-434. https://doi.org/10.2144/000112145
- Plovins A, Alvarez AM, Ibanez M, Molina M, Nombela C. 1994. Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl. Environ. Microbiol. 60: 4638-4641.
-
Raths SK, Naider F, Becker JM. 1988 . Peptide Analogues Compete with the Binding of
$\alpha$ -factor to Its Receptor in Saccharomyces cerevisiae. J. Biol. Chem. 263: 17333-17341. -
Kippert F. 1995. A rapid permeabilization procedure for accurate quantitative determination of
$\beta$ -galactosidase activity in yeast cells. FEMS Microbiol Lett. 128: 201-206. -
Jenness DD, Sprtrick P. 1986. Down regulation of the
$\alpha$ -factor pheromone receptor in S. cerevisiae. Cell 46: 345-353. https://doi.org/10.1016/0092-8674(86)90655-0 - Mathew E, Bajaj A, Connelly SM, Sargsyan H, Ding FX, Hajduczok AJ, et al. 2011. Differential interactions of fluorescent agonists and antagonists with the yeast G protein coupled receptor Ste2p. J. Mol. Biol. 409: 513-528. https://doi.org/10.1016/j.jmb.2011.03.059
-
Son CD, Sargsyan H, Naider F, Becker JM. 2004. Identification of ligand binding regions of the Saccharomyces cerevisiae
$\alpha$ -factor pheromone receptor by photoaffinity cross-linking. Biochemistry 43: 13193-13203. https://doi.org/10.1021/bi0496889 - Xue CB, Mckinney A, Lu HF, Jiang Y, Becker JM, Naider F. 1996. Probing the functional conformation of the tridecapeptide mating pheromone of Saccharomyces cerevisiae through study of disulfide-constrained analogs. Int. J. Pept. Protein. Res. 47: 131-141.
- Banerjee R, Chattopadhyay S, Basu G. 2009. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature. Proteins 76: 184-200. https://doi.org/10.1002/prot.22337
-
Wakamatsu K, Okada A, Miyazawa T, Masui Y, Sakakibara S, Higashijima T. 1987. Conformations of yeast
$\alpha$ -mating factor and analog peptides as bound to phospholipid bilayer. Eur. J. Biochem. 163: 331-338. https://doi.org/10.1111/j.1432-1033.1987.tb10804.x -
Higashijima T, Masui Y, Chino N, Sakakibara S, Kita H, Miyazawa T. 1984. Conformations of tridecapeptide
$\alpha$ -mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Eur. J. Biochem. 140: 163-171. https://doi.org/10.1111/j.1432-1033.1984.tb08081.x - Marsh L. 1992. Substitutions in the hydrophobic core of the alpha-factor receptor of Saccharomyces cerevisiae permit response to Saccharomyces kluyveri alpha-factor and to antagonist. Mol. Cell. Biol. 12: 3959-3966. https://doi.org/10.1128/MCB.12.9.3959
- Liu S, Henry LK, Lee BK, Becker JM, Naider F. 2000. Position 13 analogs of the tridecapeptide mating pheromone from Saccharomyces cerevisiae: design of an iodinatable ligand for receptor binding. J. Pept. Res. 56: 24-34. https://doi.org/10.1034/j.1399-3011.2000.00730.x
- Widmann C, Gibson S, Jarpe MB, Johnson GL. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143-180. https://doi.org/10.1152/physrev.1999.79.1.143
- Oehlen LJ, Mckinney JD, Cross FR. 1996. Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1. Mol. Cell. Biol. 16: 2830-2837. https://doi.org/10.1128/MCB.16.6.2830
- Bardwell L, Cook JG, Chang EC, Cairns BR, Thorner J. 1996. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and FUS3 with the upstream MAP kinase kinase Ste7. Mol. Cell. Biol. 16: 3637-3650. https://doi.org/10.1128/MCB.16.7.3637